A Self-supervised Motion Representation for Portrait Video Generation
- URL: http://arxiv.org/abs/2503.10096v2
- Date: Fri, 13 Jun 2025 05:15:20 GMT
- Title: A Self-supervised Motion Representation for Portrait Video Generation
- Authors: Qiyuan Zhang, Chenyu Wu, Wenzhang Sun, Huaize Liu, Donglin Di, Wei Chen, Changqing Zou,
- Abstract summary: We propose Semantic Latent Motion (SeMo), a compact and expressive motion representation.<n>Our approach achieves both high-quality visual results and efficient inference.<n>Our approach surpasses state-of-the-art models with an 81% win rate in realism.
- Score: 19.56640370303683
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advancements in portrait video generation have been noteworthy. However, existing methods rely heavily on human priors and pre-trained generative models, Motion representations based on human priors may introduce unrealistic motion, while methods relying on pre-trained generative models often suffer from inefficient inference. To address these challenges, we propose Semantic Latent Motion (SeMo), a compact and expressive motion representation. Leveraging this representation, our approach achieve both high-quality visual results and efficient inference. SeMo follows an effective three-step framework: Abstraction, Reasoning, and Generation. First, in the Abstraction step, we use a carefully designed Masked Motion Encoder, which leverages a self-supervised learning paradigm to compress the subject's motion state into a compact and abstract latent motion (1D token). Second, in the Reasoning step, we efficiently generate motion sequences based on the driving audio signal. Finally, in the Generation step, the motion dynamics serve as conditional information to guide the motion decoder in synthesizing realistic transitions from reference frame to target video. Thanks to the compact and expressive nature of Semantic Latent Motion, our method achieves efficient motion representation and high-quality video generation. User studies demonstrate that our approach surpasses state-of-the-art models with an 81% win rate in realism. Extensive experiments further highlight its strong compression capability, reconstruction quality, and generative potential.
Related papers
- GENMO: A GENeralist Model for Human MOtion [64.16188966024542]
We present GENMO, a unified Generalist Model for Human Motion that bridges motion estimation and generation in a single framework.<n>Our key insight is to reformulate motion estimation as constrained motion generation, where the output motion must precisely satisfy observed conditioning signals.<n>Our novel architecture handles variable-length motions and mixed multimodal conditions (text, audio, video) at different time intervals, offering flexible control.
arXiv Detail & Related papers (2025-05-02T17:59:55Z) - RAGME: Retrieval Augmented Video Generation for Enhanced Motion Realism [73.38167494118746]
We propose a framework to improve the realism of motion in generated videos.
We advocate for the incorporation of a retrieval mechanism during the generation phase.
Our pipeline is designed to apply to any text-to-video diffusion model.
arXiv Detail & Related papers (2025-04-09T08:14:05Z) - VideoJAM: Joint Appearance-Motion Representations for Enhanced Motion Generation in Video Models [71.9811050853964]
VideoJAM is a novel framework that instills an effective motion prior to video generators.<n>VideoJAM achieves state-of-the-art performance in motion coherence.<n>These findings emphasize that appearance and motion can be complementary and, when effectively integrated, enhance both the visual quality and the coherence of video generation.
arXiv Detail & Related papers (2025-02-04T17:07:10Z) - Motion Prompting: Controlling Video Generation with Motion Trajectories [57.049252242807874]
We train a video generation model conditioned on sparse or dense video trajectories.<n>We translate high-level user requests into detailed, semi-dense motion prompts.<n>We demonstrate our approach through various applications, including camera and object motion control, "interacting" with an image, motion transfer, and image editing.
arXiv Detail & Related papers (2024-12-03T18:59:56Z) - MoTrans: Customized Motion Transfer with Text-driven Video Diffusion Models [59.10171699717122]
MoTrans is a customized motion transfer method enabling video generation of similar motion in new context.<n> multimodal representations from recaptioned prompt and video frames promote the modeling of appearance.<n>Our method effectively learns specific motion pattern from singular or multiple reference videos.
arXiv Detail & Related papers (2024-12-02T10:07:59Z) - Motion Dreamer: Boundary Conditional Motion Reasoning for Physically Coherent Video Generation [27.690736225683825]
We introduce Motion Dreamer, a two-stage framework that explicitly separates motion reasoning from visual synthesis.<n>Our approach introduces instance flow, a sparse-to-dense motion representation enabling effective integration of partial user-defined motions.<n>Experiments demonstrate that Motion Dreamer significantly outperforms existing methods, achieving superior motion plausibility and visual realism.
arXiv Detail & Related papers (2024-11-30T17:40:49Z) - Scaling Large Motion Models with Million-Level Human Motions [67.40066387326141]
We present MotionLib, the first million-level dataset for motion generation.<n>We train a large motion model named projname, demonstrating robust performance across a wide range of human activities.
arXiv Detail & Related papers (2024-10-04T10:48:54Z) - MotionMix: Weakly-Supervised Diffusion for Controllable Motion
Generation [19.999239668765885]
MotionMix is a weakly-supervised diffusion model that leverages both noisy and unannotated motion sequences.
Our framework consistently achieves state-of-the-art performances on text-to-motion, action-to-motion, and music-to-dance tasks.
arXiv Detail & Related papers (2024-01-20T04:58:06Z) - Motion Flow Matching for Human Motion Synthesis and Editing [75.13665467944314]
We propose emphMotion Flow Matching, a novel generative model for human motion generation featuring efficient sampling and effectiveness in motion editing applications.
Our method reduces the sampling complexity from thousand steps in previous diffusion models to just ten steps, while achieving comparable performance in text-to-motion and action-to-motion generation benchmarks.
arXiv Detail & Related papers (2023-12-14T12:57:35Z) - LaMD: Latent Motion Diffusion for Video Generation [69.4111397077229]
latent motion diffusion (LaMD) framework consists of a motion-decomposed video autoencoder and a diffusion-based motion generator.
Results show that LaMD generates high-quality videos with a wide range of motions, from dynamics to highly controllable movements.
arXiv Detail & Related papers (2023-04-23T10:32:32Z) - Learning Variational Motion Prior for Video-based Motion Capture [31.79649766268877]
We present a novel variational motion prior (VMP) learning approach for video-based motion capture.
Our framework can effectively reduce temporal jittering and failure modes in frame-wise pose estimation.
Experiments over both public datasets and in-the-wild videos have demonstrated the efficacy and generalization capability of our framework.
arXiv Detail & Related papers (2022-10-27T02:45:48Z) - MotionDiffuse: Text-Driven Human Motion Generation with Diffusion Model [35.32967411186489]
MotionDiffuse is a diffusion model-based text-driven motion generation framework.
It excels at modeling complicated data distribution and generating vivid motion sequences.
It responds to fine-grained instructions on body parts, and arbitrary-length motion synthesis with time-varied text prompts.
arXiv Detail & Related papers (2022-08-31T17:58:54Z) - High-Fidelity Neural Human Motion Transfer from Monocular Video [71.75576402562247]
Video-based human motion transfer creates video animations of humans following a source motion.
We present a new framework which performs high-fidelity and temporally-consistent human motion transfer with natural pose-dependent non-rigid deformations.
In the experimental results, we significantly outperform the state-of-the-art in terms of video realism.
arXiv Detail & Related papers (2020-12-20T16:54:38Z) - Dynamic Future Net: Diversified Human Motion Generation [31.987602940970888]
Human motion modelling is crucial in many areas such as computer graphics, vision and virtual reality.
We present Dynamic Future Net, a new deep learning model where we explicitly focuses on the intrinsic motionity of human motion dynamics.
Our model can generate a large number of high-quality motions with arbitrary duration, and visuallyincing variations in both space and time.
arXiv Detail & Related papers (2020-08-25T02:31:41Z) - Hierarchical Style-based Networks for Motion Synthesis [150.226137503563]
We propose a self-supervised method for generating long-range, diverse and plausible behaviors to achieve a specific goal location.
Our proposed method learns to model the motion of human by decomposing a long-range generation task in a hierarchical manner.
On large-scale skeleton dataset, we show that the proposed method is able to synthesise long-range, diverse and plausible motion.
arXiv Detail & Related papers (2020-08-24T02:11:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.