An Real-Sim-Real (RSR) Loop Framework for Generalizable Robotic Policy Transfer with Differentiable Simulation
- URL: http://arxiv.org/abs/2503.10118v1
- Date: Thu, 13 Mar 2025 07:27:05 GMT
- Title: An Real-Sim-Real (RSR) Loop Framework for Generalizable Robotic Policy Transfer with Differentiable Simulation
- Authors: Lu Shi, Yuxuan Xu, Shiyu Wang, Jinhao Huang, Wenhao Zhao, Yufei Jia, Zike Yan, Weibin Gu, Guyue Zhou,
- Abstract summary: This paper introduces a novel Real-Sim-Real loop framework to address the gap between simulation and real-world conditions.<n>A key contribution of our work is the design of an informative cost function that encourages the collection of diverse and representative real-world data.<n>Our approach is implemented on the versatile Mujoco MJX platform, and our framework is compatible with a wide range of robotic systems.
- Score: 13.15220962477623
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The sim-to-real gap remains a critical challenge in robotics, hindering the deployment of algorithms trained in simulation to real-world systems. This paper introduces a novel Real-Sim-Real (RSR) loop framework leveraging differentiable simulation to address this gap by iteratively refining simulation parameters, aligning them with real-world conditions, and enabling robust and efficient policy transfer. A key contribution of our work is the design of an informative cost function that encourages the collection of diverse and representative real-world data, minimizing bias and maximizing the utility of each data point for simulation refinement. This cost function integrates seamlessly into existing reinforcement learning algorithms (e.g., PPO, SAC) and ensures a balanced exploration of critical regions in the real domain. Furthermore, our approach is implemented on the versatile Mujoco MJX platform, and our framework is compatible with a wide range of robotic systems. Experimental results on several robotic manipulation tasks demonstrate that our method significantly reduces the sim-to-real gap, achieving high task performance and generalizability across diverse scenarios of both explicit and implicit environmental uncertainties.
Related papers
- From Abstraction to Reality: DARPA's Vision for Robust Sim-to-Real Autonomy [6.402441477393285]
TIAMAT aims to address rapid and robust transfer of autonomy technologies across dynamic and complex environments.
Current methods for simulation-to-reality (sim-to-real) transfer often rely on high-fidelity simulations.
TIAMAT's approaches aim to achieve abstract-to-real transfer for effective and rapid real-world adaptation.
arXiv Detail & Related papers (2025-03-14T02:06:10Z) - Robotic World Model: A Neural Network Simulator for Robust Policy Optimization in Robotics [50.191655141020505]
We introduce a novel framework for learning world models.<n>By providing a scalable and robust framework, we pave the way for adaptive and efficient robotic systems in real-world applications.
arXiv Detail & Related papers (2025-01-17T10:39:09Z) - LoopSR: Looping Sim-and-Real for Lifelong Policy Adaptation of Legged Robots [20.715834172041763]
We propose a lifelong policy adaptation framework named LoopSR.
It reconstructs the real-world environments back in simulation for further improvement.
By leveraging the continual training, LoopSR achieves superior data efficiency compared with strong baselines.
arXiv Detail & Related papers (2024-09-26T16:02:25Z) - DrEureka: Language Model Guided Sim-To-Real Transfer [64.14314476811806]
Transferring policies learned in simulation to the real world is a promising strategy for acquiring robot skills at scale.
In this paper, we investigate using Large Language Models (LLMs) to automate and accelerate sim-to-real design.
Our approach is capable of solving novel robot tasks, such as quadruped balancing and walking atop a yoga ball.
arXiv Detail & Related papers (2024-06-04T04:53:05Z) - Evaluating Real-World Robot Manipulation Policies in Simulation [91.55267186958892]
Control and visual disparities between real and simulated environments are key challenges for reliable simulated evaluation.
We propose approaches for mitigating these gaps without needing to craft full-fidelity digital twins of real-world environments.
We create SIMPLER, a collection of simulated environments for manipulation policy evaluation on common real robot setups.
arXiv Detail & Related papers (2024-05-09T17:30:16Z) - A Conservative Approach for Few-Shot Transfer in Off-Dynamics Reinforcement Learning [3.1515473193934778]
Off-dynamics Reinforcement Learning seeks to transfer a policy from a source environment to a target environment characterized by distinct yet similar dynamics.
We propose an innovative approach inspired by recent advancements in Imitation Learning and conservative RL algorithms.
arXiv Detail & Related papers (2023-12-24T13:09:08Z) - Nonprehensile Riemannian Motion Predictive Control [57.295751294224765]
We introduce a novel Real-to-Sim reward analysis technique to reliably imagine and predict the outcome of taking possible actions for a real robotic platform.
We produce a closed-loop controller to reactively push objects in a continuous action space.
We observe that RMPC is robust in cluttered as well as occluded environments and outperforms the baselines.
arXiv Detail & Related papers (2021-11-15T18:50:04Z) - A User's Guide to Calibrating Robotics Simulators [54.85241102329546]
This paper proposes a set of benchmarks and a framework for the study of various algorithms aimed to transfer models and policies learnt in simulation to the real world.
We conduct experiments on a wide range of well known simulated environments to characterize and offer insights into the performance of different algorithms.
Our analysis can be useful for practitioners working in this area and can help make informed choices about the behavior and main properties of sim-to-real algorithms.
arXiv Detail & Related papers (2020-11-17T22:24:26Z) - Reactive Long Horizon Task Execution via Visual Skill and Precondition
Models [59.76233967614774]
We describe an approach for sim-to-real training that can accomplish unseen robotic tasks using models learned in simulation to ground components of a simple task planner.
We show an increase in success rate from 91.6% to 98% in simulation and from 10% to 80% success rate in the real-world as compared with naive baselines.
arXiv Detail & Related papers (2020-11-17T15:24:01Z) - Point Cloud Based Reinforcement Learning for Sim-to-Real and Partial
Observability in Visual Navigation [62.22058066456076]
Reinforcement Learning (RL) represents powerful tools to solve complex robotic tasks.
RL does not work directly in the real-world, which is known as the sim-to-real transfer problem.
We propose a method that learns on an observation space constructed by point clouds and environment randomization.
arXiv Detail & Related papers (2020-07-27T17:46:59Z) - Sim-to-Real Transfer with Incremental Environment Complexity for
Reinforcement Learning of Depth-Based Robot Navigation [1.290382979353427]
Soft-Actor Critic (SAC) training strategy using incremental environment complexity is proposed to drastically reduce the need for additional training in the real world.
The application addressed is depth-based mapless navigation, where a mobile robot should reach a given waypoint in a cluttered environment with no prior mapping information.
arXiv Detail & Related papers (2020-04-30T10:47:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.