論文の概要: Resource efficient data transmission on animals based on machine learning
- arxiv url: http://arxiv.org/abs/2503.10277v1
- Date: Thu, 13 Mar 2025 11:38:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-14 15:53:27.297142
- Title: Resource efficient data transmission on animals based on machine learning
- Title(参考訳): 機械学習に基づく動物の資源効率的なデータ伝達
- Authors: Wilhelm Kerle-Malcharek, Karsten Klein, Martin Wikelski, Falk Schreiber, Timm A. Wild,
- Abstract要約: 本研究の目的は,機械学習によって誘導される選択的データ伝達が,バイオログのエネルギー消費をいかに減らすかを検討することである。
バイオログ(英: Biologger)は、様々なセンサーを通して動物の行動を追跡する電子機器である。
- 参考スコア(独自算出の注目度): 1.25828876338076
- License:
- Abstract: Bio-loggers, electronic devices used to track animal behaviour through various sensors, have become essential in wildlife research. Despite continuous improvements in their capabilities, bio-loggers still face significant limitations in storage, processing, and data transmission due to the constraints of size and weight, which are necessary to avoid disturbing the animals. This study aims to explore how selective data transmission, guided by machine learning, can reduce the energy consumption of bio-loggers, thereby extending their operational lifespan without requiring hardware modifications.
- Abstract(参考訳): 様々なセンサーを通して動物の行動を追跡する電子装置であるバイオブロガーは、野生生物の研究に欠かせない存在となっている。
生物ログは、その能力が継続的に改善されているにもかかわらず、サイズと重量の制約のため、保存、処理、データ伝達の重大な制限に直面しており、動物を混乱させないために必要である。
本研究の目的は、機械学習によって導かれる選択的データ伝送が、バイオログのエネルギー消費を減らし、ハードウェアの変更を必要とせずに運用寿命を延ばす方法を検討することである。
関連論文リスト
- BuckTales : A multi-UAV dataset for multi-object tracking and re-identification of wild antelopes [0.6267336085190178]
BuckTalesは、野生動物の多目的追跡と再同定問題を解決するために設計された最初の大規模なUAVデータセットである。
MOTデータセットには12の高解像度(5.4K)ビデオを含む680トラックを含む120万以上のアノテーションが含まれている。
Re-IDデータセットには、同時に2つのUAVで捕獲された730人の個人が含まれている。
論文 参考訳(メタデータ) (2024-11-11T11:55:14Z) - Computer Vision for Primate Behavior Analysis in the Wild [61.08941894580172]
ビデオに基づく行動監視は、動物の認知と行動を研究する方法を変える大きな可能性を秘めている。
今でも、エキサイティングな見通しと、今日実際に達成できるものの間には、かなり大きなギャップがある。
論文 参考訳(メタデータ) (2024-01-29T18:59:56Z) - OmniMotionGPT: Animal Motion Generation with Limited Data [70.35662376853163]
最初のテキストアニマルモーションデータセットであるAnimalML3Dを紹介した。
我々は,動物データに基づくヒトの動き生成ベースラインのトレーニング結果よりも定量的かつ質的に,高い多様性と忠実さで動物の動きを生成することができる。
論文 参考訳(メタデータ) (2023-11-30T07:14:00Z) - A benchmark for computational analysis of animal behavior, using animal-borne tags [0.6055654308018396]
行動アノテーション付きデータセットの集合であるBio-logger Ethogram Benchmark (BEBE)について述べる。
生物ログデータに基づく動物行動同定のための深層・古典的機械学習手法の性能の比較を行った。
論文 参考訳(メタデータ) (2023-05-18T06:20:45Z) - Seeing biodiversity: perspectives in machine learning for wildlife
conservation [49.15793025634011]
機械学習は、野生生物種の理解、モニタリング能力、保存性を高めるために、この分析的な課題を満たすことができると我々は主張する。
本質的に、新しい機械学習アプローチとエコロジー分野の知識を組み合わせることで、動物生態学者は現代のセンサー技術が生み出すデータの豊富さを生かすことができる。
論文 参考訳(メタデータ) (2021-10-25T13:40:36Z) - Cetacean Translation Initiative: a roadmap to deciphering the
communication of sperm whales [97.41394631426678]
最近の研究では、非ヒト種における音響コミュニケーションを分析するための機械学習ツールの約束を示した。
マッコウクジラの大量生物音響データの収集と処理に必要な重要な要素について概説する。
開発された技術能力は、非人間コミュニケーションと動物行動研究を研究する幅広いコミュニティにおいて、クロス応用と進歩をもたらす可能性が高い。
論文 参考訳(メタデータ) (2021-04-17T18:39:22Z) - AcinoSet: A 3D Pose Estimation Dataset and Baseline Models for Cheetahs
in the Wild [51.35013619649463]
我々はAcinoSetと呼ばれる野生のフリーランニングチーターの広範なデータセットを提示する。
データセットには、119,490フレームのマルチビュー同期高速ビデオ映像、カメラキャリブレーションファイル、7,588フレームが含まれている。
また、結果の3D軌道、人間チェックされた3D地上真実、およびデータを検査するインタラクティブツールも提供される。
論文 参考訳(メタデータ) (2021-03-24T15:54:11Z) - Perspectives on individual animal identification from biology and
computer vision [58.81800919492064]
計算機科学者と生物学者の両方に利用可能なツールの概要を提供するコンピュータビジョン識別技術の最近の進歩を概観する。
動物識別プロジェクトを始めるための勧告を提示し、現在の限界を説明し、将来どのように対処されるかを提案する。
論文 参考訳(メタデータ) (2021-02-28T16:50:09Z) - Self-Supervised Transformers for Activity Classification using Ambient
Sensors [3.1829446824051195]
本稿では,環境センサを用いた環境下での居住者の活動の分類手法を提案する。
また,自己教師付き方式でトランスフォーマーを事前訓練する手法を,ハイブリッドオートエンコーダ分類モデルとして提案する。
論文 参考訳(メタデータ) (2020-11-22T20:46:25Z) - Machine learning approaches for identifying prey handling activity in
otariid pinnipeds [12.814241588031685]
本稿では,アザラシの捕食行動の同定に焦点をあてる。
考慮すべきデータは、アザラシに直接取り付けられたデバイスによって収集された3D加速度計と深度センサーのストリームである。
機械学習(ML)アルゴリズムに基づく自動モデルを提案する。
論文 参考訳(メタデータ) (2020-02-10T15:30:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。