論文の概要: Kolmogorov-Arnold Attention: Is Learnable Attention Better For Vision Transformers?
- arxiv url: http://arxiv.org/abs/2503.10632v1
- Date: Thu, 13 Mar 2025 17:59:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-14 15:54:12.427035
- Title: Kolmogorov-Arnold Attention: Is Learnable Attention Better For Vision Transformers?
- Title(参考訳): Kolmogorov-Arnold氏の注意: ビジョントランスフォーマーにとって学習可能な注意はより良いか?
- Authors: Subhajit Maity, Killian Hitsman, Xin Li, Aritra Dutta,
- Abstract要約: 学習可能なアクティベーション関数(KAN)は、学習可能なアクティベーション関数で構成され、データからより複雑な関係を捉えることができる。
本稿では,バニラ視覚変換器(ViT)のための一般学習可能なKolmogorov-Arnold Attention(KArAt)を最初に設計する。
- 参考スコア(独自算出の注目度): 5.2768199606089095
- License:
- Abstract: Kolmogorov-Arnold networks (KANs) are a remarkable innovation consisting of learnable activation functions with the potential to capture more complex relationships from data. Although KANs are useful in finding symbolic representations and continual learning of one-dimensional functions, their effectiveness in diverse machine learning (ML) tasks, such as vision, remains questionable. Presently, KANs are deployed by replacing multilayer perceptrons (MLPs) in deep network architectures, including advanced architectures such as vision Transformers (ViTs). In this paper, we are the first to design a general learnable Kolmogorov-Arnold Attention (KArAt) for vanilla ViTs that can operate on any choice of basis. However, the computing and memory costs of training them motivated us to propose a more modular version, and we designed particular learnable attention, called Fourier-KArAt. Fourier-KArAt and its variants either outperform their ViT counterparts or show comparable performance on CIFAR-10, CIFAR-100, and ImageNet-1K datasets. We dissect these architectures' performance and generalization capacity by analyzing their loss landscapes, weight distributions, optimizer path, attention visualization, and spectral behavior, and contrast them with vanilla ViTs. The goal of this paper is not to produce parameter- and compute-efficient attention, but to encourage the community to explore KANs in conjunction with more advanced architectures that require a careful understanding of learnable activations. Our open-source code and implementation details are available on: https://subhajitmaity.me/KArAt
- Abstract(参考訳): Kolmogorov-Arnoldネットワーク(KAN)は、学習可能なアクティベーション関数と、データからより複雑な関係を捉える能力を備えた驚くべきイノベーションである。
感性は1次元関数の記号表現や連続学習に有用であるが,視覚などの多様な機械学習(ML)タスクにおける効果は疑問視されている。
現在のkanは、ビジョントランスフォーマー(ViT)などの高度なアーキテクチャを含む、ディープネットワークアーキテクチャにおける多層パーセプトロン(MLP)を置き換えることでデプロイされている。
本稿では,Vanilla ViTをベースとした汎用学習可能なKolmogorov-Arnold Attention(KArAt)を設計する。
しかし、トレーニングのコンピューティングとメモリコストは、よりモジュール化されたバージョンを提案する動機となり、Fourier-KArAtと呼ばれる特別な学習可能な注意を設計しました。
Fourier-KArAtとその派生機種は、ViTよりも優れているか、CIFAR-10、CIFAR-100、ImageNet-1Kデータセットで同等のパフォーマンスを示している。
我々は、これらのアーキテクチャの性能と一般化能力を、損失景観、重量分布、オプティマイザパス、アテンションビジュアライゼーション、スペクトル挙動を分析して分析し、バニラVTと対比する。
本研究の目的は,パラメータと計算効率の両面での注意を喚起することではなく,学習可能なアクティベーションを慎重に理解する必要のある,より高度なアーキテクチャとともに,KANSAを探求することをコミュニティに奨励することである。
当社のオープンソースコードと実装の詳細は、https://subhajitmaity.me/KArAt.comで公開しています。
関連論文リスト
- CAS-ViT: Convolutional Additive Self-attention Vision Transformers for Efficient Mobile Applications [73.80247057590519]
ビジョントランスフォーマー(ViT)は、トークンミキサーの強力なグローバルコンテキスト能力によって、ニューラルネットワークの革命的な進歩を示す。
CAS-ViT: Convolutional Additive Self-attention Vision Transformerを導入し、モバイルアプリケーションにおける効率と性能のバランスを実現する。
ImageNet-1Kのパラメータは12M/21Mで83.0%/84.1%である。
論文 参考訳(メタデータ) (2024-08-07T11:33:46Z) - DuoFormer: Leveraging Hierarchical Visual Representations by Local and Global Attention [1.5624421399300303]
本稿では、畳み込みニューラルネットワーク(CNN)の特徴抽出機能と視覚変換器(ViT)の高度な表現可能性とを包括的に統合した新しい階層型トランスフォーマーモデルを提案する。
インダクティブバイアスの欠如と、ViTの広範囲なトレーニングデータセットへの依存に対処するため、我々のモデルはCNNバックボーンを使用して階層的な視覚表現を生成する。
これらの表現は、革新的なパッチトークン化を通じてトランスフォーマー入力に適合する。
論文 参考訳(メタデータ) (2024-07-18T22:15:35Z) - DAT++: Spatially Dynamic Vision Transformer with Deformable Attention [87.41016963608067]
Deformable Attention Transformer (DAT++)を提案する。
DAT++は、85.9%のImageNet精度、54.5および47.0のMS-COCOインスタンスセグメンテーションmAP、51.5のADE20KセマンティックセグメンテーションmIoUで、様々なビジュアル認識ベンチマークで最先端の結果を達成している。
論文 参考訳(メタデータ) (2023-09-04T08:26:47Z) - Enhancing Performance of Vision Transformers on Small Datasets through
Local Inductive Bias Incorporation [13.056764072568749]
ビジョントランスフォーマー(ViT)は、大規模なデータセットでは顕著なパフォーマンスを達成するが、小さなデータセットでは畳み込みニューラルネットワーク(CNN)よりもパフォーマンスが悪くなる傾向がある。
本稿では、パッチレベルのローカル情報を抽出し、ViTの自己保持ブロックで使用される埋め込みに組み込む、ローカルInFormation Enhancer (LIFE) と呼ばれるモジュールを提案する。
提案するモジュールはメモリと効率が良く, 分類や蒸留トークンなどの補助トークンを処理できるほど柔軟である。
論文 参考訳(メタデータ) (2023-05-15T11:23:18Z) - RIFormer: Keep Your Vision Backbone Effective While Removing Token Mixer [95.71132572688143]
本稿では,基本構造ブロックのトークンミキサーを除去しながら,視覚バックボーンを効果的に維持する方法について検討する。
視覚変換器(ViT)の自己アテンション(自己アテンション)としてのトークンミキサーは、異なる空間トークン間での情報通信を行うが、かなりの計算コストと遅延に悩まされる。
論文 参考訳(メタデータ) (2023-04-12T07:34:13Z) - Pretraining the Vision Transformer using self-supervised methods for
vision based Deep Reinforcement Learning [0.0]
いくつかの最先端の自己教師型手法を用いて視覚変換器の事前学習を行い、学習した表現の質を評価する。
その結果,すべての手法が有用な表現を学習し,表現の崩壊を避けるのに有効であることが示唆された。
時間順序検証タスクで事前訓練されたエンコーダは、すべての実験で最高の結果を示す。
論文 参考訳(メタデータ) (2022-09-22T10:18:59Z) - Patch-level Representation Learning for Self-supervised Vision
Transformers [68.8862419248863]
視覚変換器(ViT)は近年、より優れたアーキテクチャ選択として多くの注目を集めており、様々な視覚タスクにおいて畳み込みネットワークよりも優れています。
これに触発された私たちは、パッチレベルの表現をより良く学習するための、SelfPatchという、シンプルで効果的なビジュアルプリテキストタスクを設計しました。
我々は、既存のSSLメソッドの様々な視覚的タスクに対する性能を大幅に改善できることを実証した。
論文 参考訳(メタデータ) (2022-06-16T08:01:19Z) - Improving Sample Efficiency of Value Based Models Using Attention and
Vision Transformers [52.30336730712544]
性能を犠牲にすることなくサンプル効率を向上させることを目的とした深層強化学習アーキテクチャを提案する。
状態表現の特徴マップ上の自己注意機構を変換器を用いて学習する視覚的注意モデルを提案する。
我々は,このアーキテクチャがいくつかのAtari環境におけるサンプルの複雑さを向上すると同時に,いくつかのゲームにおいて優れたパフォーマンスを実現することを実証的に実証した。
論文 参考訳(メタデータ) (2022-02-01T19:03:03Z) - Self-slimmed Vision Transformer [52.67243496139175]
視覚変換器(ViT)は、様々な視覚タスクにおいて一般的な構造となり、CNN(Creative Convolutional Neural Network)よりも優れています。
本稿では,バニラVT,すなわちSiTに対する汎用的な自己スリム学習手法を提案する。
具体的には、まず、ViTの推論効率を向上させる新しいToken Slimming Module (TSM) を設計する。
論文 参考訳(メタデータ) (2021-11-24T16:48:57Z) - Hybrid BYOL-ViT: Efficient approach to deal with small Datasets [0.0]
本稿では,ラベルなしデータの強大かつ十分な増大を伴う自己超越が,ニューラルネットワークの第1層を効果的に学習する方法について検討する。
自己教師型アーキテクチャから派生した低レベルの特徴は、この創発的アーキテクチャの堅牢性と全体的な性能を向上させることができることを示す。
論文 参考訳(メタデータ) (2021-11-08T21:44:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。