CULEMO: Cultural Lenses on Emotion -- Benchmarking LLMs for Cross-Cultural Emotion Understanding
- URL: http://arxiv.org/abs/2503.10688v1
- Date: Wed, 12 Mar 2025 01:01:30 GMT
- Title: CULEMO: Cultural Lenses on Emotion -- Benchmarking LLMs for Cross-Cultural Emotion Understanding
- Authors: Tadesse Destaw Belay, Ahmed Haj Ahmed, Alvin Grissom II, Iqra Ameer, Grigori Sidorov, Olga Kolesnikova, Seid Muhie Yimam,
- Abstract summary: We introduce Cultural Lenses on Emotion (CuLEmo), the first benchmark designed to evaluate culture-aware emotion prediction across six languages.<n>CuLEmo comprises 400 crafted questions per language, each requiring nuanced cultural reasoning and understanding.<n>Our findings reveal that (1) emotion conceptualizations vary significantly across languages and cultures, (2) LLMs performance likewise varies by language and cultural context, and (3) prompting in English with explicit country context often outperforms in-language prompts for culture-aware emotion and sentiment understanding.
- Score: 7.308914305652415
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: NLP research has increasingly focused on subjective tasks such as emotion analysis. However, existing emotion benchmarks suffer from two major shortcomings: (1) they largely rely on keyword-based emotion recognition, overlooking crucial cultural dimensions required for deeper emotion understanding, and (2) many are created by translating English-annotated data into other languages, leading to potentially unreliable evaluation. To address these issues, we introduce Cultural Lenses on Emotion (CuLEmo), the first benchmark designed to evaluate culture-aware emotion prediction across six languages: Amharic, Arabic, English, German, Hindi, and Spanish. CuLEmo comprises 400 crafted questions per language, each requiring nuanced cultural reasoning and understanding. We use this benchmark to evaluate several state-of-the-art LLMs on culture-aware emotion prediction and sentiment analysis tasks. Our findings reveal that (1) emotion conceptualizations vary significantly across languages and cultures, (2) LLMs performance likewise varies by language and cultural context, and (3) prompting in English with explicit country context often outperforms in-language prompts for culture-aware emotion and sentiment understanding. We hope this benchmark guides future research toward developing more culturally aligned NLP systems.
Related papers
- CAReDiO: Cultural Alignment of LLM via Representativeness and Distinctiveness Guided Data Optimization [50.90288681622152]
Large Language Models (LLMs) more deeply integrate into human life across various regions.
Existing approaches develop culturally aligned LLMs through fine-tuning with culture-specific corpora.
We introduce CAReDiO, a novel cultural data construction framework.
arXiv Detail & Related papers (2025-04-09T13:40:13Z) - Exploring Cultural Nuances in Emotion Perception Across 15 African Languages [8.894537613998516]
Cross-linguistic analysis of emotion expression in 15 African languages.
We examine four key dimensions of emotion representation: text length, sentiment polarity, emotion co-occurrence, and intensity variations.
We observe a higher prevalence of negative sentiment in several Nigerian languages compared to lower negativity in languages like IsiXhosa.
arXiv Detail & Related papers (2025-03-25T13:30:03Z) - BRIGHTER: BRIdging the Gap in Human-Annotated Textual Emotion Recognition Datasets for 28 Languages [93.92804151830744]
We present BRIGHTER -- a collection of multi-labeled datasets in 28 different languages.
We describe the data collection and annotation processes and the challenges of building these datasets.
We show that BRIGHTER datasets are a step towards bridging the gap in text-based emotion recognition.
arXiv Detail & Related papers (2025-02-17T15:39:50Z) - Analyzing Cultural Representations of Emotions in LLMs through Mixed Emotion Survey [2.9213203896291766]
This study focuses on analyzing the cultural representations of emotions in Large Language Models (LLMs)
Our methodology is based on the studies of Miyamoto et al. (2010), which identified distinctive emotional indicators in Japanese and American human responses.
We find that models have limited alignment with the evidence in the literature.
arXiv Detail & Related papers (2024-08-04T20:56:05Z) - Translating Across Cultures: LLMs for Intralingual Cultural Adaptation [12.5954253354303]
We define the task of cultural adaptation and create an evaluation framework to evaluate the performance of modern LLMs.
We analyze possible issues with automatic adaptation.
We hope that this paper will offer more insight into the cultural understanding of LLMs and their creativity in cross-cultural scenarios.
arXiv Detail & Related papers (2024-06-20T17:06:58Z) - Extrinsic Evaluation of Cultural Competence in Large Language Models [53.626808086522985]
We focus on extrinsic evaluation of cultural competence in two text generation tasks.
We evaluate model outputs when an explicit cue of culture, specifically nationality, is perturbed in the prompts.
We find weak correlations between text similarity of outputs for different countries and the cultural values of these countries.
arXiv Detail & Related papers (2024-06-17T14:03:27Z) - Understanding the Capabilities and Limitations of Large Language Models for Cultural Commonsense [98.09670425244462]
Large language models (LLMs) have demonstrated substantial commonsense understanding.
This paper examines the capabilities and limitations of several state-of-the-art LLMs in the context of cultural commonsense tasks.
arXiv Detail & Related papers (2024-05-07T20:28:34Z) - EmoBench: Evaluating the Emotional Intelligence of Large Language Models [73.60839120040887]
EmoBench is a benchmark that draws upon established psychological theories and proposes a comprehensive definition for machine Emotional Intelligence (EI)
EmoBench includes a set of 400 hand-crafted questions in English and Chinese, which are meticulously designed to require thorough reasoning and understanding.
Our findings reveal a considerable gap between the EI of existing Large Language Models and the average human, highlighting a promising direction for future research.
arXiv Detail & Related papers (2024-02-19T11:48:09Z) - Not All Countries Celebrate Thanksgiving: On the Cultural Dominance in
Large Language Models [89.94270049334479]
This paper identifies a cultural dominance issue within large language models (LLMs)
LLMs often provide inappropriate English-culture-related answers that are not relevant to the expected culture when users ask in non-English languages.
arXiv Detail & Related papers (2023-10-19T05:38:23Z) - Cultural Alignment in Large Language Models: An Explanatory Analysis Based on Hofstede's Cultural Dimensions [10.415002561977655]
This research proposes a Cultural Alignment Test (Hoftede's CAT) to quantify cultural alignment using Hofstede's cultural dimension framework.
We quantitatively evaluate large language models (LLMs) against the cultural dimensions of regions like the United States, China, and Arab countries.
Our results quantify the cultural alignment of LLMs and reveal the difference between LLMs in explanatory cultural dimensions.
arXiv Detail & Related papers (2023-08-25T14:50:13Z) - Multilingual Language Models are not Multicultural: A Case Study in
Emotion [8.73324795579955]
We investigate whether the widely-used multilingual LMs in 2023 reflect differences in emotional expressions across cultures and languages.
We find that embeddings obtained from LMs are Anglocentric, and generative LMs reflect Western norms, even when responding to prompts in other languages.
arXiv Detail & Related papers (2023-07-03T21:54:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.