論文の概要: From Understanding to Excelling: Template-Free Algorithm Design through Structural-Functional Co-Evolution
- arxiv url: http://arxiv.org/abs/2503.10721v1
- Date: Thu, 13 Mar 2025 08:26:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-17 13:04:58.104888
- Title: From Understanding to Excelling: Template-Free Algorithm Design through Structural-Functional Co-Evolution
- Title(参考訳): 理解からエクセルリングへ:構造文共進化によるテンプレートフリーアルゴリズム設計
- Authors: Zhe Zhao, Haibin Wen, Pengkun Wang, Ye Wei, Zaixi Zhang, Xi Lin, Fei Liu, Bo An, Hui Xiong, Yang Wang, Qingfu Zhang,
- Abstract要約: 大規模言語モデル(LLM)はアルゴリズム生成と最適化の自動化を大幅に加速した。
LLMに基づくエンドツーエンドのアルゴリズム生成と最適化フレームワークを提案する。
我々のアプローチは、LLMの深い意味理解を利用して、自然言語の要求や人間による論文をコードソリューションに変換する。
- 参考スコア(独自算出の注目度): 39.42526347710991
- License:
- Abstract: Large language models (LLMs) have greatly accelerated the automation of algorithm generation and optimization. However, current methods such as EoH and FunSearch mainly rely on predefined templates and expert-specified functions that focus solely on the local evolution of key functionalities. Consequently, they fail to fully leverage the synergistic benefits of the overall architecture and the potential of global optimization. In this paper, we introduce an end-to-end algorithm generation and optimization framework based on LLMs. Our approach utilizes the deep semantic understanding of LLMs to convert natural language requirements or human-authored papers into code solutions, and employs a two-dimensional co-evolution strategy to optimize both functional and structural aspects. This closed-loop process spans problem analysis, code generation, and global optimization, automatically identifying key algorithm modules for multi-level joint optimization and continually enhancing performance and design innovation. Extensive experiments demonstrate that our method outperforms traditional local optimization approaches in both performance and innovation, while also exhibiting strong adaptability to unknown environments and breakthrough potential in structural design. By building on human research, our framework generates and optimizes novel algorithms that surpass those designed by human experts, broadening the applicability of LLMs for algorithm design and providing a novel solution pathway for automated algorithm development.
- Abstract(参考訳): 大規模言語モデル(LLM)はアルゴリズム生成と最適化の自動化を大幅に加速した。
しかし、EoHやFunSearchのような現在のメソッドは主に、主要な機能の局所的な進化にのみ焦点をあてる、事前定義されたテンプレートと専門家指定関数に依存している。
その結果、全体的なアーキテクチャのシナジスティックな利点と、グローバルな最適化の可能性を完全に活用することができない。
本稿では,LLMに基づくエンドツーエンドのアルゴリズム生成と最適化フレームワークを提案する。
提案手法では,LLMの深い意味理解を活用して,自然言語要求や人間による論文をコードソリューションに変換するとともに,機能面と構造面の両方を最適化するために2次元の共進化戦略を採用している。
このクローズドループプロセスは、問題解析、コード生成、グローバル最適化にまたがり、マルチレベル共同最適化のための重要なアルゴリズムモジュールを自動的に識別し、パフォーマンスと設計のイノベーションを継続的に強化する。
大規模な実験により,本手法は性能とイノベーションの両方において従来の局所最適化手法よりも優れており,未知環境への強い適応性と構造設計におけるブレークスルーの可能性を示している。
人的研究に基づいて,本フレームワークは,人的専門家が設計したアルゴリズムを超越した新しいアルゴリズムを生成,最適化し,アルゴリズム設計におけるLLMの適用性を拡大し,自動アルゴリズム開発のための新しいソリューションパスを提供する。
関連論文リスト
- Improving Existing Optimization Algorithms with LLMs [0.9668407688201361]
本稿では,Large Language Models (LLM) が既存の最適化アルゴリズムをどのように拡張するかを検討する。
事前学習した知識を用いて、革新的なバリエーションと実装戦略を提案する能力を示す。
以上の結果から, GPT-4oによる代替案はCMSAのエキスパート設計よりも優れていた。
論文 参考訳(メタデータ) (2025-02-12T10:58:57Z) - A Survey on Inference Optimization Techniques for Mixture of Experts Models [50.40325411764262]
大規模Mixture of Experts(MoE)モデルは、条件計算によるモデル容量と計算効率の向上を提供する。
これらのモデル上で推論をデプロイし実行することは、計算資源、レイテンシ、エネルギー効率において大きな課題を示す。
本調査では,システムスタック全体にわたるMoEモデルの最適化手法について分析する。
論文 参考訳(メタデータ) (2024-12-18T14:11:15Z) - Deep Insights into Automated Optimization with Large Language Models and Evolutionary Algorithms [3.833708891059351]
大きな言語モデル(LLM)と進化的アルゴリズム(EA)は、制限を克服し、最適化をより自動化するための有望な新しいアプローチを提供する。
LLMは最適化戦略の生成、洗練、解釈が可能な動的エージェントとして機能する。
EAは進化作用素を通して、複雑な解空間を効率的に探索する。
論文 参考訳(メタデータ) (2024-10-28T09:04:49Z) - Large Language Model Aided Multi-objective Evolutionary Algorithm: a Low-cost Adaptive Approach [4.442101733807905]
本研究では,大規模言語モデル(LLM)と従来の進化的アルゴリズムを組み合わせることで,アルゴリズムの探索能力と一般化性能を向上させる新しいフレームワークを提案する。
適応機構内の補助的評価関数と自動的プロンプト構築を活用し, LLM の利用を柔軟に調整する。
論文 参考訳(メタデータ) (2024-10-03T08:37:02Z) - Discovering Preference Optimization Algorithms with and for Large Language Models [50.843710797024805]
オフライン優先最適化は、LLM(Large Language Model)出力の品質を向上・制御するための重要な手法である。
我々は、人間の介入なしに、新しい最先端の選好最適化アルゴリズムを自動で発見する客観的発見を行う。
実験は、ロジスティックと指数的損失を適応的にブレンドする新しいアルゴリズムであるDiscoPOPの最先端性能を示す。
論文 参考訳(メタデータ) (2024-06-12T16:58:41Z) - When Large Language Model Meets Optimization [7.822833805991351]
大規模言語モデル(LLM)は、インテリジェントなモデリングと最適化における戦略的意思決定を容易にする。
本稿では,LLMと最適化アルゴリズムの組み合わせの進展と可能性について概説する。
論文 参考訳(メタデータ) (2024-05-16T13:54:37Z) - Localized Zeroth-Order Prompt Optimization [54.964765668688806]
そこで我々は,ZOPO(Localized zeroth-order prompt optimization)という新しいアルゴリズムを提案する。
ZOPOはニューラル・タンジェント・カーネルをベースとしたガウス法を標準ゼロ階次最適化に取り入れ、高速な局所最適探索を高速化する。
注目すべきは、ZOPOは最適化性能とクエリ効率の両方の観点から、既存のベースラインを上回っていることだ。
論文 参考訳(メタデータ) (2024-03-05T14:18:15Z) - Optimization-Inspired Learning with Architecture Augmentations and
Control Mechanisms for Low-Level Vision [74.9260745577362]
本稿では,GDC(Generative, Discriminative, and Corrective)の原則を集約する,最適化に着想を得た統合学習フレームワークを提案する。
フレキシブルな組み合わせで最適化モデルを効果的に解くために,3つのプロパゲーティブモジュールを構築した。
低レベル視覚タスクにおける実験は、GDCの有効性と適応性を検証する。
論文 参考訳(メタデータ) (2020-12-10T03:24:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。