Teamwork makes the dream work: LLMs-Based Agents for GitHub README.MD Summarization
- URL: http://arxiv.org/abs/2503.10876v1
- Date: Thu, 13 Mar 2025 20:42:39 GMT
- Title: Teamwork makes the dream work: LLMs-Based Agents for GitHub README.MD Summarization
- Authors: Duc S. H. Nguyen, Bach G. Truong, Phuong T. Nguyen, Juri Di Rocco, Davide Di Ruscio,
- Abstract summary: We propose Metagente as a novel approach to amplify the synergy of various Large Language Models (LLMs)<n>Metagente is a Multi-Agent framework based on a series of LLMs to self-optimize the system through evaluation, feedback, and cooperation among specialized agents.<n>The performance gain compared to GitSum, the most relevant benchmark, ranges from 27.63% to 60.43%.
- Score: 7.330697128881243
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The proliferation of Large Language Models (LLMs) in recent years has realized many applications in various domains. Being trained with a huge of amount of data coming from various sources, LLMs can be deployed to solve different tasks, including those in Software Engineering (SE). Though they have been widely adopted, the potential of using LLMs cooperatively has not been thoroughly investigated. In this paper, we proposed Metagente as a novel approach to amplify the synergy of various LLMs. Metagente is a Multi-Agent framework based on a series of LLMs to self-optimize the system through evaluation, feedback, and cooperation among specialized agents. Such a framework creates an environment where multiple agents iteratively refine and optimize prompts from various perspectives. The results of these explorations are then reviewed and aggregated by a teacher agent. To study its performance, we evaluated Metagente with an SE task, i.e., summarization of README.MD files, and compared it with three well-established baselines, i.e., GitSum, LLaMA-2, and GPT-4o. The results show that our proposed approach works efficiently and effectively, consuming a small amount of data for fine-tuning but still getting a high accuracy, thus substantially outperforming the baselines. The performance gain compared to GitSum, the most relevant benchmark, ranges from 27.63% to 60.43%. More importantly, compared to using only one LLM, Metagente boots up the accuracy to multiple folds.
Related papers
- LLM4Ranking: An Easy-to-use Framework of Utilizing Large Language Models for Document Reranking [15.060195612587805]
We introduce a unified framework, textbfLLM4Ranking, which enables users to adopt different ranking methods using open-source or closed-source API-based LLMs.
Our framework provides a simple and interface for document reranking with LLMs, as well as easy-to-use evaluation and fine-tuning scripts for this task.
arXiv Detail & Related papers (2025-04-10T04:08:38Z) - Collab-Overcooked: Benchmarking and Evaluating Large Language Models as Collaborative Agents [17.773801766612703]
Large language models (LLMs) based agent systems have made great strides in real-world applications beyond traditional NLP tasks.<n>This paper proposes a new benchmark, Collab-Overcooked, built on the popular Overcooked-AI game with more applicable and challenging tasks in interactive environments.
arXiv Detail & Related papers (2025-02-27T13:31:13Z) - Star-Agents: Automatic Data Optimization with LLM Agents for Instruction Tuning [71.2981957820888]
We propose a novel Star-Agents framework, which automates the enhancement of data quality across datasets.
The framework initially generates diverse instruction data with multiple LLM agents through a bespoke sampling method.
The generated data undergo a rigorous evaluation using a dual-model method that assesses both difficulty and quality.
arXiv Detail & Related papers (2024-11-21T02:30:53Z) - AvaTaR: Optimizing LLM Agents for Tool Usage via Contrastive Reasoning [93.96463520716759]
Large language model (LLM) agents have demonstrated impressive capabilities in utilizing external tools and knowledge to boost accuracy and hallucinations.
Here, we introduce AvaTaR, a novel and automated framework that optimize an LLM agent to effectively leverage provided tools, improving performance on a given task.
arXiv Detail & Related papers (2024-06-17T04:20:02Z) - Towards Efficient LLM Grounding for Embodied Multi-Agent Collaboration [70.09561665520043]
We propose a novel framework for multi-agent collaboration that introduces Reinforced Advantage feedback (ReAd) for efficient self-refinement of plans.
We provide theoretical analysis by extending advantage-weighted regression in reinforcement learning to multi-agent systems.
Experiments on Over-AI and a difficult variant of RoCoBench show that ReAd surpasses baselines in success rate, and also significantly decreases the interaction steps of agents.
arXiv Detail & Related papers (2024-05-23T08:33:19Z) - Automated Commit Message Generation with Large Language Models: An Empirical Study and Beyond [24.151927600694066]
Commit Message Generation (CMG) approaches aim to automatically generate commit messages based on given code diffs.
This paper conducts the first comprehensive experiment to investigate how far we have been in applying Large Language Models (LLMs) to generate high-quality commit messages.
arXiv Detail & Related papers (2024-04-23T08:24:43Z) - Benchmarking LLMs on the Semantic Overlap Summarization Task [9.656095701778975]
This paper comprehensively evaluates Large Language Models (LLMs) on the Semantic Overlap Summarization (SOS) task.
We report well-established metrics like ROUGE, BERTscore, and SEM-F1$ on two different datasets of alternative narratives.
arXiv Detail & Related papers (2024-02-26T20:33:50Z) - Identifying Factual Inconsistencies in Summaries: Grounding LLM Inference via Task Taxonomy [48.29181662640212]
Factual inconsistencies pose a significant hurdle for the faithful summarization by generative models.
We consolidate key error types of inconsistent facts in summaries, and incorporate them to facilitate both the zero-shot and supervised paradigms of LLMs.
arXiv Detail & Related papers (2024-02-20T08:41:23Z) - Recommender AI Agent: Integrating Large Language Models for Interactive
Recommendations [53.76682562935373]
We introduce an efficient framework called textbfInteRecAgent, which employs LLMs as the brain and recommender models as tools.
InteRecAgent achieves satisfying performance as a conversational recommender system, outperforming general-purpose LLMs.
arXiv Detail & Related papers (2023-08-31T07:36:44Z) - LLMRec: Benchmarking Large Language Models on Recommendation Task [54.48899723591296]
The application of Large Language Models (LLMs) in the recommendation domain has not been thoroughly investigated.
We benchmark several popular off-the-shelf LLMs on five recommendation tasks, including rating prediction, sequential recommendation, direct recommendation, explanation generation, and review summarization.
The benchmark results indicate that LLMs displayed only moderate proficiency in accuracy-based tasks such as sequential and direct recommendation.
arXiv Detail & Related papers (2023-08-23T16:32:54Z) - MME: A Comprehensive Evaluation Benchmark for Multimodal Large Language Models [73.86954509967416]
Multimodal Large Language Model (MLLM) relies on the powerful LLM to perform multimodal tasks.
This paper presents the first comprehensive MLLM Evaluation benchmark MME.
It measures both perception and cognition abilities on a total of 14 subtasks.
arXiv Detail & Related papers (2023-06-23T09:22:36Z) - Generative Multimodal Entity Linking [24.322540112710918]
Multimodal Entity Linking (MEL) is the task of mapping mentions with multimodal contexts to referent entities from a knowledge base.
Existing MEL methods mainly focus on designing complex multimodal interaction mechanisms and require fine-tuning all model parameters.
We propose GEMEL, a Generative Multimodal Entity Linking framework based on Large Language Models (LLMs)
Our framework is compatible with any off-the-shelf language model, paving the way towards an efficient and general solution.
arXiv Detail & Related papers (2023-06-22T07:57:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.