論文の概要: Graph-Grounded LLMs: Leveraging Graphical Function Calling to Minimize LLM Hallucinations
- arxiv url: http://arxiv.org/abs/2503.10941v1
- Date: Thu, 13 Mar 2025 22:57:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-17 13:08:20.062394
- Title: Graph-Grounded LLMs: Leveraging Graphical Function Calling to Minimize LLM Hallucinations
- Title(参考訳): グラフを囲むLLM:LLMの幻覚を最小化するグラフィカル関数の活用
- Authors: Piyush Gupta, Sangjae Bae, David Isele,
- Abstract要約: グラフは、自動運転車のモーションプランニング、ソーシャルネットワーク、シーン理解、知識グラフなど、幅広いアプリケーションに不可欠なものだ。
本稿では,グラフライブラリを関数呼び出しを通じて統合することにより,グラフ関連タスク上でのLLM性能を向上させるシステムであるGraph-Grounded LLMを提案する。
我々は,NLGraphベンチマークの結果から,幻覚の顕著な低減と,グラフに基づく問題の解法における数学的精度の向上を実証した。
- 参考スコア(独自算出の注目度): 8.07547612687425
- License:
- Abstract: The adoption of Large Language Models (LLMs) is rapidly expanding across various tasks that involve inherent graphical structures. Graphs are integral to a wide range of applications, including motion planning for autonomous vehicles, social networks, scene understanding, and knowledge graphs. Many problems, even those not initially perceived as graph-based, can be effectively addressed through graph theory. However, when applied to these tasks, LLMs often encounter challenges, such as hallucinations and mathematical inaccuracies. To overcome these limitations, we propose Graph-Grounded LLMs, a system that improves LLM performance on graph-related tasks by integrating a graph library through function calls. By grounding LLMs in this manner, we demonstrate significant reductions in hallucinations and improved mathematical accuracy in solving graph-based problems, as evidenced by the performance on the NLGraph benchmark. Finally, we showcase a disaster rescue application where the Graph-Grounded LLM acts as a decision-support system.
- Abstract(参考訳): 大規模言語モデル(LLM)の採用は、固有のグラフィカル構造を含む様々なタスクに急速に拡大しています。
グラフは、自動運転車のモーションプランニング、ソーシャルネットワーク、シーン理解、知識グラフなど、幅広いアプリケーションに不可欠なものだ。
当初グラフベースと認識されていなかった問題でさえも、グラフ理論によって効果的に対処することができる。
しかしながら、これらのタスクに適用すると、LLMは幻覚や数学的不正確な問題にしばしば遭遇する。
この制限を克服するため,グラフライブラリを関数呼び出しを通じて統合することにより,グラフ関連タスクにおけるLLM性能を向上させるシステムであるGraph-Grounded LLMを提案する。
この方法でLLMを基底化することにより、NLGraphベンチマークの性能が示すように、幻覚の大幅な減少とグラフベースの問題の解法における数学的精度の向上が示される。
最後に,Graph-Grounded LLMが意思決定支援システムとして機能する災害救助アプリケーションを紹介した。
関連論文リスト
- A Hierarchical Language Model For Interpretable Graph Reasoning [47.460255447561906]
ノード中心の局所情報と相互作用中心のグローバル構造を捉えるために2ブロックアーキテクチャを用いる階層型グラフ言語モデル(HLM-G)を導入する。
提案手法は,大規模グラフ処理における計算コストを削減しつつ,高い効率性,効率性,ロバスト性で様々なグラフクエリに対処することを可能にする。
多様なグラフ推論およびノード,リンク,グラフレベルの実世界のタスクに対する総合的な評価は,本手法の優位性を強調している。
論文 参考訳(メタデータ) (2024-10-29T00:28:02Z) - What Do LLMs Need to Understand Graphs: A Survey of Parametric Representation of Graphs [69.48708136448694]
大規模言語モデル(LLM)は、期待される推論能力と推論能力のために、AIコミュニティで再編成されている。
我々は、グラフのこのようなパラメトリック表現、グラフ法則は、LLMがグラフデータを入力として理解させるソリューションであると信じている。
論文 参考訳(メタデータ) (2024-10-16T00:01:31Z) - Revisiting the Graph Reasoning Ability of Large Language Models: Case Studies in Translation, Connectivity and Shortest Path [53.71787069694794]
大規模言語モデル(LLM)のグラフ推論能力に着目する。
グラフ記述変換,グラフ接続,最短パス問題という3つの基本グラフタスクにおけるLLMの能力を再考する。
この結果から,LLMはテキスト記述によるグラフ構造理解に失敗し,これらの基本課題に対して様々な性能を示すことが可能であることが示唆された。
論文 参考訳(メタデータ) (2024-08-18T16:26:39Z) - Can Graph Learning Improve Planning in LLM-based Agents? [61.47027387839096]
言語エージェントにおけるタスクプランニングは、大規模言語モデル(LLM)の開発とともに重要な研究トピックとして浮上している。
本稿では,課題計画のためのグラフ学習に基づく手法について検討する。
我々のグラフ学習への関心は、注意のバイアスと自己回帰的損失が、グラフ上の意思決定を効果的にナビゲートするLLMの能力を妨げているという理論的な発見に起因している。
論文 参考訳(メタデータ) (2024-05-29T14:26:24Z) - Can we Soft Prompt LLMs for Graph Learning Tasks? [22.286189757942054]
GraphPrompterは、グラフ情報とLLM(Large Language Models)をソフトプロンプトで整合させるように設計されたフレームワークである。
このフレームワークは、グラフ関連タスクの予測子としてLLMの実質的な機能を明らかにしている。
論文 参考訳(メタデータ) (2024-02-15T23:09:42Z) - Can Graph Descriptive Order Affect Solving Graph Problems with LLMs? [38.1577036285387]
大規模言語モデル(LLM)は、数学的推論や論理的推論を含む推論タスクにおいて大きな成功を収めた。
従来の研究は様々な手法を用いてLSMのグラフ推論能力について研究してきた。
重要な要素は、主に見過ごされ、グラフ記述がモデルに提示される即時順序である。
論文 参考訳(メタデータ) (2024-02-11T09:46:24Z) - GraphLLM: Boosting Graph Reasoning Ability of Large Language Model [7.218768686958888]
GraphLLMは、グラフ学習モデルと大規模言語モデルを統合する、先駆的なエンドツーエンドアプローチである。
4つの基本グラフ推論タスクにおける経験的評価により,GraphLLMの有効性が検証された。
その結果、54.44%の精度が向上し、96.45%の文脈が短縮された。
論文 参考訳(メタデータ) (2023-10-09T16:42:00Z) - Integrating Graphs with Large Language Models: Methods and Prospects [68.37584693537555]
大規模言語モデル (LLMs) が最前線として登場し、様々なアプリケーションにおいて非並列の長所を示している。
LLMとグラフ構造化データを組み合わせることは、非常に興味深いトピックです。
本稿では、そのような統合を2つの主要なカテゴリに分岐する。
論文 参考訳(メタデータ) (2023-10-09T07:59:34Z) - Can Language Models Solve Graph Problems in Natural Language? [51.28850846990929]
大型言語モデル (LLM) は暗黙的なグラフィカル構造を持つ様々なタスクに採用されている。
自然言語をシミュレーションするグラフベース問題解決のベンチマークであるNLGraphを提案する。
論文 参考訳(メタデータ) (2023-05-17T08:29:21Z) - Graph-ToolFormer: To Empower LLMs with Graph Reasoning Ability via
Prompt Augmented by ChatGPT [10.879701971582502]
我々は,複雑なグラフデータに対する推論能力を備えた大規模言語モデル(LLM)の開発を目指している。
最新のChatGPTおよびToolformerモデルに触発された我々は、外部グラフ推論APIツールを使用するために、ChatGPTによって強化されたプロンプトでLLM自体を教えるためのGraph-ToolFormerフレームワークを提案する。
論文 参考訳(メタデータ) (2023-04-10T05:25:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。