Open3DVQA: A Benchmark for Comprehensive Spatial Reasoning with Multimodal Large Language Model in Open Space
- URL: http://arxiv.org/abs/2503.11094v1
- Date: Fri, 14 Mar 2025 05:35:38 GMT
- Title: Open3DVQA: A Benchmark for Comprehensive Spatial Reasoning with Multimodal Large Language Model in Open Space
- Authors: Weichen Zhan, Zile Zhou, Zhiheng Zheng, Chen Gao, Jinqiang Cui, Yong Li, Xinlei Chen, Xiao-Ping Zhang,
- Abstract summary: We propose a novel benchmark, Open3DVQA, to comprehensively evaluate the spatial reasoning capacities of state-of-the-art (SOTA) foundation models in open 3D space.<n>Open3DVQA consists of 9k VQA samples, collected using an efficient semi-automated tool in a high-fidelity urban simulator.
- Score: 41.18548960865975
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Spatial reasoning is a fundamental capability of embodied agents and has garnered widespread attention in the field of multimodal large language models (MLLMs). In this work, we propose a novel benchmark, Open3DVQA, to comprehensively evaluate the spatial reasoning capacities of current state-of-the-art (SOTA) foundation models in open 3D space. Open3DVQA consists of 9k VQA samples, collected using an efficient semi-automated tool in a high-fidelity urban simulator. We evaluate several SOTA MLLMs across various aspects of spatial reasoning, such as relative and absolute spatial relationships, situational reasoning, and object-centric spatial attributes. Our results reveal that: 1) MLLMs perform better at answering questions regarding relative spatial relationships than absolute spatial relationships, 2) MLLMs demonstrate similar spatial reasoning abilities for both egocentric and allocentric perspectives, and 3) Fine-tuning large models significantly improves their performance across different spatial reasoning tasks. We believe that our open-source data collection tools and in-depth analyses will inspire further research on MLLM spatial reasoning capabilities. The benchmark is available at https://github.com/WeichenZh/Open3DVQA.
Related papers
- MM-Spatial: Exploring 3D Spatial Understanding in Multimodal LLMs [13.678235444299286]
Multimodal large language models (MLLMs) excel at 2D visual understanding but remain limited in their ability to reason about 3D space.
In this work, we leverage large-scale high-quality 3D scene data with open-set annotations to introduce 1) a novel supervised fine-tuning dataset and 2) a new evaluation benchmark, focused on indoor scenes.
arXiv Detail & Related papers (2025-03-17T12:34:22Z) - An Empirical Analysis on Spatial Reasoning Capabilities of Large Multimodal Models [56.537253374781876]
Large Multimodal Models (LMMs) have achieved strong performance across a range of vision and language tasks.
However, their spatial reasoning capabilities are under-investigated.
We construct a novel VQA dataset, Spatial-MM, to comprehensively study LMMs' spatial understanding and reasoning capabilities.
arXiv Detail & Related papers (2024-11-09T03:07:33Z) - Coarse Correspondences Boost Spatial-Temporal Reasoning in Multimodal Language Model [51.83436609094658]
We introduce Coarse Correspondences, a simple lightweight method that enhances MLLMs' spatial-temporal reasoning with 2D images as input.
Our method uses a lightweight tracking model to identify primary object correspondences between frames in a video or across different image viewpoints.
We demonstrate that this simple training-free approach brings substantial gains to GPT4-V/O consistently on four benchmarks.
arXiv Detail & Related papers (2024-08-01T17:57:12Z) - GSR-BENCH: A Benchmark for Grounded Spatial Reasoning Evaluation via Multimodal LLMs [3.2688425993442696]
The ability to understand and reason about spatial relationships between objects in images is an important component of visual reasoning.
We extend the previously released What'sUp dataset and propose a novel comprehensive evaluation for spatial relationship understanding.
arXiv Detail & Related papers (2024-06-19T06:15:26Z) - SpaRC and SpaRP: Spatial Reasoning Characterization and Path Generation for Understanding Spatial Reasoning Capability of Large Language Models [70.01883340129204]
spatial reasoning is a crucial component of both biological and artificial intelligence.
We present a comprehensive study of the capability of current state-of-the-art large language models (LLMs) on spatial reasoning.
arXiv Detail & Related papers (2024-06-07T01:06:34Z) - SpatialRGPT: Grounded Spatial Reasoning in Vision Language Models [68.13636352687257]
We introduce Spatial Region GPT (SpatialRGPT) to enhance VLMs' spatial perception and reasoning capabilities.
During inference, when provided with user-specified region proposals, SpatialRGPT can accurately perceive their relative directions and distances.
Our results demonstrate that SpatialRGPT significantly enhances performance in spatial reasoning tasks, both with and without local region prompts.
arXiv Detail & Related papers (2024-06-03T17:59:06Z) - SpatialVLM: Endowing Vision-Language Models with Spatial Reasoning
Capabilities [59.39858959066982]
understanding and reasoning about spatial relationships is a fundamental capability for Visual Question Answering (VQA) and robotics.
We develop an automatic 3D spatial VQA data generation framework that scales up to 2 billion VQA examples on 10 million real-world images.
By training a VLM on such data, we significantly enhance its ability on both qualitative and quantitative spatial VQA.
arXiv Detail & Related papers (2024-01-22T18:01:01Z) - Enhancing the Spatial Awareness Capability of Multi-Modal Large Language
Model [25.86351431223383]
The Multi-Modal Large Language Model (MLLM) is an extension of the Large Language Model (LLM) equipped with the capability to receive and infer multi-modal data.
This paper proposes using more precise spatial position information between objects to guide MLLM in providing more accurate responses to user-related inquiries.
arXiv Detail & Related papers (2023-10-31T10:57:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.