Hole spin splitting in a Ge quantum dot with finite barriers
- URL: http://arxiv.org/abs/2503.11106v1
- Date: Fri, 14 Mar 2025 05:59:04 GMT
- Title: Hole spin splitting in a Ge quantum dot with finite barriers
- Authors: Jiawei Wang, Xuedong Hu, Herbert F Fotso,
- Abstract summary: We study the low-energy spectrum of a single hole confined in a planar Ge quantum dot (QD)<n>The QD is sandwiched between two GeSi barriers of finite potential height grown along the [001] direction.<n>We investigate the impact from the top-gate electric field and the residual tensile strain on the qubit states.
- Score: 2.4054544518909076
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study the low-energy spectrum of a single hole confined in a planar Ge quantum dot (QD) within the effective-mass formalism. The QD is sandwiched between two GeSi barriers of finite potential height grown along the [001] direction. To treat this finite barrier problem, we adopt an independent-band approach in dealing with boundary conditions. The effects of different system parameters are investigated, including the width of the out-of-plane confining well, the size of the dot, and silicon concentration in the confining layers. The more accurate finite-barrier model results in the non-negligible dependence of the anisotropic $g$-factor on the choice of boundary conditions and on the silicon concentration in the barrier. Furthermore, while the ideal model of a planar dot with a square-well heterostructure already has an intrinsic spin-orbit coupling, realistic effects arising from the experimental setup may give rise to additional contributions. We investigate the impact from the top-gate electric field and the residual tensile strain on the qubit states. The results indicate that these effects are important contributions to the total spin-orbit coupling which enables fast electric control.
Related papers
- Theory of Valley Splitting in Si/SiGe Spin-Qubits: Interplay of Strain, Resonances and Random Alloy Disorder [0.0]
A critical challenge in strained Si/SiGe quantum wells is the existence of two nearly degenerate valley states at the conduction band minimum.<n>We develop a comprehensive envelope-function theory augmented by empirical nonlocal pseudopotential theory to incorporate the effects of alloy disorder, strain, and non-trivial resonances.
arXiv Detail & Related papers (2024-12-29T23:43:41Z) - Influence of a squeezed prewell on tunneling properties and bound states in heterostructures [49.1574468325115]
A resonant tunneling effect of an extremely thin potential well on the transmission of charged particles is investigated.
The peak-to-valley ratio is shown to increase crucially with the squeezing of the well.
arXiv Detail & Related papers (2024-07-01T10:24:57Z) - Bound polariton states in the Dicke-Ising model [41.94295877935867]
We present a study of hybrid light-matter excitations in cavity QED materials.<n>We derive the exact excitations of the system in the thermodynamic limit.
arXiv Detail & Related papers (2024-06-17T18:00:01Z) - Adiabatic State Preparation in a Quantum Ising Spin Chain [32.352947507436355]
We report on adiabatic state preparation in the one-dimensional quantum Ising model using ultracold bosons in a tilted optical lattice.
We observe enhanced fluctuations around the transition between paramagnetic and antiferromagnetic states, marking the precursor of quantum critical behavior.
arXiv Detail & Related papers (2024-04-11T05:27:40Z) - Large spin shuttling oscillations enabling high-fidelity single qubit
gates [36.136619420474766]
We demonstrate the possibility of significantly outperforming static EDSR-type single-qubit pulsing by taking advantage of the larger spatial mobility to achieve larger Rabi frequencies.
Our theoretical results indicate that fidelities are ultimately bottlenecked by spin-valley physics, which can be suppressed through the use of quantum optimal control.
arXiv Detail & Related papers (2024-03-01T15:27:57Z) - Adiabatic preparation of fractional Chern insulators from an effective
thin-torus limit [0.0]
We explore the quasi one-dimensional (thin torus, or TT) limit of fractional Chern insulators (FCIs) as a starting point for their adiabatic preparation in quantum simulators.
We find that the hopping-induced TT limit adiabatically connects the FCI state to a trivial charge density wave (CDW) ground state.
arXiv Detail & Related papers (2022-12-21T19:00:03Z) - Penetration of Arbitrary Double Potential Barriers with Probability
Unity: Implications for Testing the Existence of a Minimum Length [5.100621266098336]
Quantum tunneling across double potential barriers is studied.
It is rigorously proved that large barriers of arbitrary shapes can be penetrated by low-energy particles with a probability of unity.
arXiv Detail & Related papers (2022-06-09T03:05:09Z) - Review on coherent quantum emitters in hexagonal boron nitride [91.3755431537592]
I discuss the state-of-the-art of defect centers in hexagonal boron nitride with a focus on optically coherent defect centers.
The spectral transition linewidth remains unusually narrow even at room temperature.
The field is put into a broad perspective with impact on quantum technology such as quantum optics, quantum photonics as well as spin optomechanics.
arXiv Detail & Related papers (2022-01-31T12:49:43Z) - Gain/loss effects on spin-orbit coupled ultracold atoms in
two-dimensional optical lattices [0.5249805590164902]
We investigate the corresponding non-Hermitian tight-binding model and evaluate the gain/loss effects on various properties of the system.
We find that the conventional bulk-boundary correspondence does not break down with only on-site gain/loss due to the lack of non-Hermitian skin effect.
Given the technical accessibility of state-dependent atom loss, this model could be realized in current cold-atom experiments.
arXiv Detail & Related papers (2022-01-04T16:00:30Z) - Effect of Emitters on Quantum State Transfer in Coupled Cavity Arrays [48.06402199083057]
We study the effects of atoms in cavities which can absorb and emit photons as they propagate down the array.
Our model is equivalent to previously examined spin chains in the one-excitation sector and in the absence of emitters.
arXiv Detail & Related papers (2021-12-10T18:52:07Z) - Hole Spin Qubits in Ge Nanowire Quantum Dots: Interplay of Orbital
Magnetic Field, Strain, and Growth Direction [0.0]
Hole spin qubits in quasi one-dimensional structures are a promising platform for quantum information processing.
We show that at the magnetic field values at which qubits are operated, orbital effects of magnetic fields can strongly affect the response of the spin qubit.
We study one-dimensional hole systems in Ge under the influence of electric and magnetic fields applied perpendicularly to the device.
arXiv Detail & Related papers (2021-10-28T12:00:26Z) - Observation-dependent suppression and enhancement of two-photon
coincidences by tailored losses [68.8204255655161]
Hong-Ou-Mandel (HOM) effect can lead to a perfect suppression of two-particle coincidences between the output ports of a balanced beam splitter.
In this work, we demonstrate experimentally that the two-particle coincidence statistics of two bosons can instead be seamlessly tuned to substantial enhancement.
Our findings reveal a new approach to harnessing non-Hermitian settings for the manipulation of multi-particle quantum states.
arXiv Detail & Related papers (2021-05-12T06:47:35Z) - Chemical tuning of spin clock transitions in molecular monomers based on
nuclear spin-free Ni(II) [52.259804540075514]
We report the existence of a sizeable quantum tunnelling splitting between the two lowest electronic spin levels of mononuclear Ni complexes.
The level anti-crossing, or magnetic clock transition, associated with this gap has been directly monitored by heat capacity experiments.
The comparison of these results with those obtained for a Co derivative, for which tunnelling is forbidden by symmetry, shows that the clock transition leads to an effective suppression of intermolecular spin-spin interactions.
arXiv Detail & Related papers (2021-03-04T13:31:40Z) - Probing the coherence of solid-state qubits at avoided crossings [51.805457601192614]
We study the quantum dynamics of paramagnetic defects interacting with a nuclear spin bath at avoided crossings.
The proposed theoretical approach paves the way to designing the coherence properties of spin qubits from first principles.
arXiv Detail & Related papers (2020-10-21T15:37:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.