Adiabatic State Preparation in a Quantum Ising Spin Chain
- URL: http://arxiv.org/abs/2404.07481v1
- Date: Thu, 11 Apr 2024 05:27:40 GMT
- Title: Adiabatic State Preparation in a Quantum Ising Spin Chain
- Authors: Sooshin Kim, Alexander Lukin, Matthew Rispoli, M. Eric Tai, Adam M. Kaufman, Perrin Segura, Yanfei Li, Joyce Kwan, Julian LĂ©onard, Brice Bakkali-Hassani, Markus Greiner,
- Abstract summary: We report on adiabatic state preparation in the one-dimensional quantum Ising model using ultracold bosons in a tilted optical lattice.
We observe enhanced fluctuations around the transition between paramagnetic and antiferromagnetic states, marking the precursor of quantum critical behavior.
- Score: 32.352947507436355
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We report on adiabatic state preparation in the one-dimensional quantum Ising model using ultracold bosons in a tilted optical lattice. We prepare many-body ground states of controllable system sizes and observe enhanced fluctuations around the transition between paramagnetic and antiferromagnetic states, marking the precursor of quantum critical behavior. Furthermore, we find evidence for superpositions of domain walls and study their effect on the many-body ground state by measuring the populations of each spin configuration across the transition. These results shed new light on the effect of boundary conditions in finite-size quantum systems.
Related papers
- Thermalization and Criticality on an Analog-Digital Quantum Simulator [133.58336306417294]
We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution.
We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions.
We digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization.
arXiv Detail & Related papers (2024-05-27T17:40:39Z) - Neural-network quantum states for ultra-cold Fermi gases [49.725105678823915]
This work introduces a novel Pfaffian-Jastrow neural-network quantum state that includes backflow transformation based on message-passing architecture.
We observe the emergence of strong pairing correlations through the opposite-spin pair distribution functions.
Our findings suggest that neural-network quantum states provide a promising strategy for studying ultra-cold Fermi gases.
arXiv Detail & Related papers (2023-05-15T17:46:09Z) - Triviality of quantum trajectories close to a directed percolation
transition [0.0]
We study quantum circuits consisting of unitary gates, projective measurements, and control operations that steer the system towards a pure absorbing state.
Two types of phase transition occur as the rate of these control operations is increased: a measurement-induced entanglement transition, and a directed percolation transition into the absorbing state.
arXiv Detail & Related papers (2022-12-28T18:52:56Z) - Non-Hermitian topological quantum states in a reservoir-engineered
transmon chain [0.0]
We show that a non-Hermitian quantum phase can be realized in a reservoir-engineered transmon chain.
We show that genuine quantum effects are observable in this system via robust and slowly decaying long-range quantum entanglement of the topological end modes.
arXiv Detail & Related papers (2022-10-06T15:21:21Z) - Spectroscopic Characterization of the Quantum Linear-Zigzag Transition
in Trapped Ions [0.0]
We realize the quantum version of the linear-zigzag structural transition for arrays of up to five ground state-cooled ions held in a linear Paul trap.
We demonstrate several of the control requirements towards entangled-state interferometry near the critical point.
arXiv Detail & Related papers (2022-06-01T13:43:25Z) - Effect of Emitters on Quantum State Transfer in Coupled Cavity Arrays [48.06402199083057]
We study the effects of atoms in cavities which can absorb and emit photons as they propagate down the array.
Our model is equivalent to previously examined spin chains in the one-excitation sector and in the absence of emitters.
arXiv Detail & Related papers (2021-12-10T18:52:07Z) - Topological quantum state control through exceptional-point proximity [0.33030080038744947]
We study the quantum evolution of a non-Hermitian qubit realized as a submanifold of a dissipative superconducting transmon circuit.
Real-time tuning of the system parameters to encircle an exceptional point results in non-reciprocal quantum state transfer.
arXiv Detail & Related papers (2021-08-11T18:00:03Z) - Observing a Topological Transition in Weak-Measurement-Induced Geometric
Phases [55.41644538483948]
Weak measurements in particular, through their back-action on the system, may enable various levels of coherent control.
We measure the geometric phases induced by sequences of weak measurements and demonstrate a topological transition in the geometric phase controlled by measurement strength.
Our results open new horizons for measurement-enabled quantum control of many-body topological states.
arXiv Detail & Related papers (2021-02-10T19:00:00Z) - Quantum Zeno effect appears in stages [64.41511459132334]
In the quantum Zeno effect, quantum measurements can block the coherent oscillation of a two level system by freezing its state to one of the measurement eigenstates.
We show that the onset of the Zeno regime is marked by a $textitcascade of transitions$ in the system dynamics as the measurement strength is increased.
arXiv Detail & Related papers (2020-03-23T18:17:36Z) - Theory of waveguide-QED with moving emitters [68.8204255655161]
We study a system composed by a waveguide and a moving quantum emitter in the single excitation subspace.
We first characterize single-photon scattering off a single moving quantum emitter, showing both nonreciprocal transmission and recoil-induced reduction of the quantum emitter motional energy.
arXiv Detail & Related papers (2020-03-20T12:14:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.