論文の概要: Uncertainty-Aware Normal-Guided Gaussian Splatting for Surface Reconstruction from Sparse Image Sequences
- arxiv url: http://arxiv.org/abs/2503.11172v1
- Date: Fri, 14 Mar 2025 08:18:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-17 13:07:19.733145
- Title: Uncertainty-Aware Normal-Guided Gaussian Splatting for Surface Reconstruction from Sparse Image Sequences
- Title(参考訳): スパース画像からの面再構成のための不確かさを意識した正規誘導型ガウススプラッティング
- Authors: Zhen Tan, Xieyuanli Chen, Jinpu Zhang, Lei Feng, Dewen Hu,
- Abstract要約: 3D Gaussian Splatting (3DGS)は、新規なビュー合成において印象的なレンダリング性能を達成した。
3DGSパイプライン内の幾何的不確かさを定量化するために,不確かさを意識した正規誘導型ガウス格子(UNG-GS)を提案する。
UNG-GSはスパース配列と高密度シーケンスの両方で最先端の手法を著しく上回っている。
- 参考スコア(独自算出の注目度): 21.120659841877508
- License:
- Abstract: 3D Gaussian Splatting (3DGS) has achieved impressive rendering performance in novel view synthesis. However, its efficacy diminishes considerably in sparse image sequences, where inherent data sparsity amplifies geometric uncertainty during optimization. This often leads to convergence at suboptimal local minima, resulting in noticeable structural artifacts in the reconstructed scenes.To mitigate these issues, we propose Uncertainty-aware Normal-Guided Gaussian Splatting (UNG-GS), a novel framework featuring an explicit Spatial Uncertainty Field (SUF) to quantify geometric uncertainty within the 3DGS pipeline. UNG-GS enables high-fidelity rendering and achieves high-precision reconstruction without relying on priors. Specifically, we first integrate Gaussian-based probabilistic modeling into the training of 3DGS to optimize the SUF, providing the model with adaptive error tolerance. An uncertainty-aware depth rendering strategy is then employed to weight depth contributions based on the SUF, effectively reducing noise while preserving fine details. Furthermore, an uncertainty-guided normal refinement method adjusts the influence of neighboring depth values in normal estimation, promoting robust results. Extensive experiments demonstrate that UNG-GS significantly outperforms state-of-the-art methods in both sparse and dense sequences. The code will be open-source.
- Abstract(参考訳): 3D Gaussian Splatting (3DGS)は、新規なビュー合成において印象的なレンダリング性能を達成した。
しかし、その有効性はスパース画像列において著しく低下し、固有データ間隔は最適化中の幾何的不確かさを増幅する。
これらの問題を緩和するため、3DGSパイプライン内の幾何的不確かさを定量化するための明示的な空間不確実性場(SUF)を特徴とする新しいフレームワークであるuncertainty-aware Normal-Guided Gaussian Splatting (UNG-GS)を提案する。
UNG-GSは、高忠実なレンダリングを可能にし、事前に頼らずに高精度な再構築を実現する。
具体的には、まず3DGSのトレーニングにガウスに基づく確率モデルを統合することにより、SUFを最適化し、適応誤差耐性を持つモデルを提供する。
次に、SuFに基づく重み付けの重み付けに不確実性を考慮した深度レンダリング戦略を用い、詳細を保存しつつノイズを効果的に低減する。
さらに、不確実性誘導正規化法は、正規推定における近隣の深さ値の影響を調整し、ロバストな結果を促進させる。
大規模な実験により、UNG-GSはスパース配列と高密度シーケンスの両方で最先端の手法を著しく上回っていることが示された。
コードはオープンソースになる。
関連論文リスト
- CDGS: Confidence-Aware Depth Regularization for 3D Gaussian Splatting [5.8678184183132265]
CDGSは3DGSを強化するために開発された信頼性を考慮した深度正規化手法である。
我々は,単眼深度推定のマルチキュー信頼マップと,運動深度からのスパース構造を適応的に調整するために活用する。
本手法は,初期訓練段階における幾何ディテールの保存性を向上し,NVSの品質と幾何精度の両面での競争性能を実現する。
論文 参考訳(メタデータ) (2025-02-20T16:12:13Z) - GP-GS: Gaussian Processes for Enhanced Gaussian Splatting [10.45038376276218]
本稿では,スパースSfM点雲の適応的および不確実性誘導密度化を実現する新しい3次元再構成フレームワークを提案する。
このパイプラインは不確実性推定を利用して、高分散予測のプルーニングを導く。
合成および実世界のデータセットで行った実験は、提案フレームワークの有効性と実用性を検証する。
論文 参考訳(メタデータ) (2025-02-04T12:50:16Z) - ResGS: Residual Densification of 3D Gaussian for Efficient Detail Recovery [11.706262924395768]
3D-GSは、しばしば豊富な詳細と完全な幾何学を捉えるのに苦労する。
本稿では, 残留分断法を新たに導入し, 残留分断法としてガウシアンを付加した。
提案手法は, 詳細を適応的に検索し, 欠落した幾何を補うとともに, 進歩的な洗練を可能にする。
論文 参考訳(メタデータ) (2024-12-10T13:19:27Z) - CityGaussianV2: Efficient and Geometrically Accurate Reconstruction for Large-Scale Scenes [53.107474952492396]
CityGaussianV2は大規模なシーン再構築のための新しいアプローチである。
分解段階の密度化・深さ回帰手法を実装し, ぼやけたアーチファクトを除去し, 収束を加速する。
本手法は, 視覚的品質, 幾何学的精度, ストレージ, トレーニングコストの両立を図っている。
論文 参考訳(メタデータ) (2024-11-01T17:59:31Z) - PF3plat: Pose-Free Feed-Forward 3D Gaussian Splatting [54.7468067660037]
PF3platは、設計選択を検証した包括的なアブレーション研究によってサポートされた、すべてのベンチマークに新しい最先端を設定します。
本フレームワークは,3DGSの高速,スケーラビリティ,高品質な3D再構成とビュー合成機能を活用している。
論文 参考訳(メタデータ) (2024-10-29T15:28:15Z) - Uncertainty-guided Optimal Transport in Depth Supervised Sparse-View 3D Gaussian [49.21866794516328]
3次元ガウシアンスプラッティングは、リアルタイムな新規ビュー合成において顕著な性能を示した。
これまでのアプローチでは、3Dガウスの訓練に奥行き監視を取り入れ、オーバーフィッティングを軽減してきた。
本研究では,3次元ガウスの深度分布を可視化する新しい手法を提案する。
論文 参考訳(メタデータ) (2024-05-30T03:18:30Z) - Gaussian Opacity Fields: Efficient Adaptive Surface Reconstruction in Unbounded Scenes [50.92217884840301]
Gaussian Opacity Fields (GOF)は、シーンにおける効率的で高品質で適応的な表面再構成のための新しいアプローチである。
GOFは3Dガウスのレイトレーシングに基づくボリュームレンダリングに由来する。
GOFは、表面再構成と新しいビュー合成において、既存の3DGSベースの手法を超越している。
論文 参考訳(メタデータ) (2024-04-16T17:57:19Z) - GaussianPro: 3D Gaussian Splatting with Progressive Propagation [49.918797726059545]
3DGSはStructure-from-Motion (SfM)技術によって生成されるポイントクラウドに大きく依存している。
本稿では, 3次元ガウスの密度化を導くために, プログレッシブ・プログレッシブ・プログレッシブ・ストラテジーを適用した新しい手法を提案する。
提案手法はデータセット上の3DGSを大幅に上回り,PSNRでは1.15dBの改善が見られた。
論文 参考訳(メタデータ) (2024-02-22T16:00:20Z) - GES: Generalized Exponential Splatting for Efficient Radiance Field Rendering [112.16239342037714]
GES(Generalized Exponential Splatting)は、GEF(Generalized Exponential Function)を用いて3Dシーンをモデル化する斬新な表現である。
周波数変調損失の助けを借りて、GESは新規なビュー合成ベンチマークにおいて競合性能を達成する。
論文 参考訳(メタデータ) (2024-02-15T17:32:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。