論文の概要: Micro-splatting: Maximizing Isotropic Constraints for Refined Optimization in 3D Gaussian Splatting
- arxiv url: http://arxiv.org/abs/2504.05740v1
- Date: Tue, 08 Apr 2025 07:15:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-16 23:54:03.634987
- Title: Micro-splatting: Maximizing Isotropic Constraints for Refined Optimization in 3D Gaussian Splatting
- Title(参考訳): マイクロスメッティング:3次元ガウススメッティングにおける精製最適化のための等方的制約の最大化
- Authors: Jee Won Lee, Hansol Lim, Sooyeun Yang, Jongseong Choi,
- Abstract要約: この研究は、高画質勾配の領域を動的に洗練する適応的な密度化戦略を実装している。
その結果、レンダリング効率を犠牲にすることなく、より密度が高くより詳細なガウス的な手段が必要とされる。
- 参考スコア(独自算出の注目度): 0.3749861135832072
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advancements in 3D Gaussian Splatting have achieved impressive scalability and real-time rendering for large-scale scenes but often fall short in capturing fine-grained details. Conventional approaches that rely on relatively large covariance parameters tend to produce blurred representations, while directly reducing covariance sizes leads to sparsity. In this work, we introduce Micro-splatting (Maximizing Isotropic Constraints for Refined Optimization in 3D Gaussian Splatting), a novel framework designed to overcome these limitations. Our approach leverages a covariance regularization term to penalize excessively large Gaussians to ensure each splat remains compact and isotropic. This work implements an adaptive densification strategy that dynamically refines regions with high image gradients by lowering the splitting threshold, followed by loss function enhancement. This strategy results in a denser and more detailed gaussian means where needed, without sacrificing rendering efficiency. Quantitative evaluations using metrics such as L1, L2, PSNR, SSIM, and LPIPS, alongside qualitative comparisons demonstrate that our method significantly enhances fine-details in 3D reconstructions.
- Abstract(参考訳): 近年の3Dガウス・スプレイティングの進歩は、大規模シーンの大幅なスケーラビリティとリアルタイムレンダリングを実現しているが、細かな細部を捉えるには不十分であることが多い。
比較的大きな共分散パラメータに依存する従来のアプローチは、ぼやけた表現を生成する傾向があるが、直接的に共分散サイズの削減はスパーシティをもたらす。
本研究では,これらの制約を克服する新しいフレームワークであるマイクロスプレイティング(3次元ガウススプレイティングにおける等方性制約の最大化)を導入する。
このアプローチは共分散正則化項を利用して過大なガウスをペナルティ化し、それぞれのスプラットがコンパクトで等方的であることを保証する。
本研究は、分割閾値を下げ、損失関数の強化を伴って、高画質勾配の領域を動的に洗練する適応密度化戦略を実装した。
この戦略により、レンダリング効率を犠牲にすることなく、より密集したより詳細なガウス的手段が必要とされる。
L1, L2, PSNR, SSIM, LPIPSなどの計測値と定性比較値を用いて定量評価を行ったところ, 3次元再構成における細部化が著しく向上することが示唆された。
関連論文リスト
- Second-order Optimization of Gaussian Splats with Importance Sampling [51.95046424364725]
3D Gaussian Splatting (3DGS) は、高品質で高速な推論時間のため、新しいビューレンダリングに広く用いられている。
本稿では,Levenberg-Marquardt (LM) と Conjugate Gradient (CG) に基づく新しい2階最適化手法を提案する。
提案手法は標準LMよりも3倍の高速化を実現し,ガウス数が少ない場合のAdamを6倍の6倍の速さで上回る。
論文 参考訳(メタデータ) (2025-04-17T12:52:08Z) - FreeSplat++: Generalizable 3D Gaussian Splatting for Efficient Indoor Scene Reconstruction [50.534213038479926]
FreeSplat++は大規模な屋内全シーン再構築の代替手法である。
深度調整による微調整により,再現精度が大幅に向上し,トレーニング時間も大幅に短縮された。
論文 参考訳(メタデータ) (2025-03-29T06:22:08Z) - ProtoGS: Efficient and High-Quality Rendering with 3D Gaussian Prototypes [81.48624894781257]
3D Gaussian Splatting (3DGS) は、新しいビュー合成において大きな進歩を遂げてきたが、ガウスプリミティブのかなりの数によって制限されている。
近年の手法では、密度の高いガウスの記憶容量を圧縮することでこの問題に対処しているが、レンダリングの品質と効率の維持には失敗している。
本稿では,ガウスの原始体を表現するためにガウスのプロトタイプを学習するProtoGSを提案し,視覚的品質を犠牲にすることなくガウスの総量を大幅に削減する。
論文 参考訳(メタデータ) (2025-03-21T18:55:14Z) - Uncertainty-Aware Normal-Guided Gaussian Splatting for Surface Reconstruction from Sparse Image Sequences [21.120659841877508]
3D Gaussian Splatting (3DGS)は、新規なビュー合成において印象的なレンダリング性能を達成した。
3DGSパイプライン内の幾何的不確かさを定量化するために,不確かさを意識した正規誘導型ガウス格子(UNG-GS)を提案する。
UNG-GSはスパース配列と高密度シーケンスの両方で最先端の手法を著しく上回っている。
論文 参考訳(メタデータ) (2025-03-14T08:18:12Z) - DyGASR: Dynamic Generalized Exponential Splatting with Surface Alignment for Accelerated 3D Mesh Reconstruction [1.2891210250935148]
従来の3次元ガウス関数の代わりに一般化指数関数を用いて粒子数を減少させるDyGASRを提案する。
また,GSR(Generalized Surface Regularization)を導入し,各点雲の最小のスケーリングベクトルをゼロにする。
提案手法は既存の3DGSベースのメッシュ再構成手法を超越し,25%の高速化,30%のメモリ使用量の削減を実現している。
論文 参考訳(メタデータ) (2024-11-14T03:19:57Z) - Correspondence-Guided SfM-Free 3D Gaussian Splatting for NVS [52.3215552448623]
SfM(Structure-from-Motion)事前処理カメラのポーズのない新しいビュー合成(NVS)は、迅速な応答能力の向上と、可変動作条件に対する堅牢性の向上に不可欠である。
最近のSfMフリー手法は、ポーズ最適化を統合し、共同カメラのポーズ推定とNVSのためのエンドツーエンドフレームワークを設計している。
既存の作業の多くは、L2損失のようなピクセル単位の画像損失関数に依存している。
本研究では,NVSのためのSfMフリー3次元ガウススプラッティングを提案する。
論文 参考訳(メタデータ) (2024-08-16T13:11:22Z) - CompGS: Efficient 3D Scene Representation via Compressed Gaussian Splatting [68.94594215660473]
Compressed Gaussian Splatting (CompGS) という,効率的な3次元シーン表現を提案する。
我々は少数のアンカープリミティブを予測に利用し、プリミティブの大多数を非常にコンパクトな残留形にカプセル化することができる。
実験の結果,提案手法は既存の手法よりも優れており,モデル精度とレンダリング品質を損なうことなく,3次元シーン表現のコンパクト性に優れていた。
論文 参考訳(メタデータ) (2024-04-15T04:50:39Z) - End-to-End Rate-Distortion Optimized 3D Gaussian Representation [33.20840558425759]
本稿では,コンパクトな3次元ガウス学習をエンドツーエンドのレート・ディストーション最適化問題として定式化する。
動的プルーニングとエントロピー制約ベクトル量子化(ECVQ)を導入し、同時に速度と歪みを最適化する。
RDO-Gaussianが40倍の3Dガウスサイズを大幅に縮小することを示すため,実シーンと合成シーンの両方で本手法の有効性を確認した。
論文 参考訳(メタデータ) (2024-04-09T14:37:54Z) - StopThePop: Sorted Gaussian Splatting for View-Consistent Real-time Rendering [42.91830228828405]
本稿では,処理オーバーヘッドを最小限に抑えた新しい階層化手法を提案する。
提案手法はガウス版よりも平均で4%遅い。
レンダリング性能はほぼ2倍に向上し,従来のガウス版よりも1.6倍高速になった。
論文 参考訳(メタデータ) (2024-02-01T11:46:44Z) - GS-SLAM: Dense Visual SLAM with 3D Gaussian Splatting [51.96353586773191]
我々は,まず3次元ガウス表現を利用したtextbfGS-SLAM を提案する。
提案手法は,地図の最適化とRGB-Dレンダリングの大幅な高速化を実現するリアルタイム微分可能なスプレイティングレンダリングパイプラインを利用する。
提案手法は,Replica,TUM-RGBDデータセット上の既存の最先端リアルタイム手法と比較して,競争性能が向上する。
論文 参考訳(メタデータ) (2023-11-20T12:08:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。