論文の概要: Creating a Good Teacher for Knowledge Distillation in Acoustic Scene Classification
- arxiv url: http://arxiv.org/abs/2503.11363v1
- Date: Fri, 14 Mar 2025 12:57:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-17 13:05:22.574454
- Title: Creating a Good Teacher for Knowledge Distillation in Acoustic Scene Classification
- Title(参考訳): 音響シーン分類における知識蒸留のための優れた教師の創出
- Authors: Tobias Morocutti, Florian Schmid, Khaled Koutini, Gerhard Widmer,
- Abstract要約: 知識蒸留(KD)は、大規模モデルの知識をよりコンパクトで効率的なモデルに圧縮する技術である。
KDは、高い性能の低複雑性音響シーン分類(ASC)システムを構築するのに非常に有効であることが証明されている。
- 参考スコア(独自算出の注目度): 3.9123551183847964
- License:
- Abstract: Knowledge Distillation (KD) is a widespread technique for compressing the knowledge of large models into more compact and efficient models. KD has proved to be highly effective in building well-performing low-complexity Acoustic Scene Classification (ASC) systems and was used in all the top-ranked submissions to this task of the annual DCASE challenge in the past three years. There is extensive research available on establishing the KD process, designing efficient student models, and forming well-performing teacher ensembles. However, less research has been conducted on investigating which teacher model attributes are beneficial for low-complexity students. In this work, we try to close this gap by studying the effects on the student's performance when using different teacher network architectures, varying the teacher model size, training them with different device generalization methods, and applying different ensembling strategies. The results show that teacher model sizes, device generalization methods, the ensembling strategy and the ensemble size are key factors for a well-performing student network.
- Abstract(参考訳): 知識蒸留(KD)は、大規模モデルの知識をよりコンパクトで効率的なモデルに圧縮するための広範な技術である。
KDは、高性能な低複雑さ音響シーン分類(ASC)システムの構築に非常に効果的であることが証明され、過去3年間のDCASEチャレンジのこの課題に対するトップランクの提出に使用された。
KDプロセスの確立、効率的な学生モデルの設計、優れたパフォーマンスの教師アンサンブルの形成に関する広範な研究がある。
しかし、低複雑さの学生にとってどのようなモデル属性が有益かを調査する研究は少ない。
本研究は,教師ネットワークアーキテクチャの違いによる生徒のパフォーマンスへの影響,教師モデルサイズの変化,異なるデバイス一般化手法による教師モデルの学習,および異なるエンハンスブル戦略の適用などによって,このギャップを埋めようとするものである。
その結果, 教師モデルのサイズ, デバイス一般化方法, アンサンブル戦略, アンサンブルサイズが, 成績の良い学生ネットワークにとって重要な要素であることが示唆された。
関連論文リスト
- Speculative Knowledge Distillation: Bridging the Teacher-Student Gap Through Interleaved Sampling [81.00825302340984]
本研究では,高品質なトレーニングデータを生成するために,投機的知識蒸留(SKD)を導入する。
SKDでは、学生はトークンを提案し、教師はそれ自身の分布に基づいて低いランクのトークンを置き換える。
翻訳,要約,数学,指示文など,各種テキスト生成タスクにおけるSKDの評価を行った。
論文 参考訳(メタデータ) (2024-10-15T06:51:25Z) - Linear Projections of Teacher Embeddings for Few-Class Distillation [14.99228980898161]
知識蒸留(KD)は、より大規模で複雑な教師モデルからより小さな学生モデルへ知識を移行するための有望なアプローチとして登場した。
学習埋め込み線形射影(LELP)と呼ばれる教師のモデル表現から知識を抽出する新しい手法を提案する。
Amazon ReviewsやSentiment140のような大規模NLPベンチマークの実験的な評価では、LELPはバイナリや少数クラスの問題に対する既存の最先端蒸留アルゴリズムと一貫して競合し、典型的には優れていることが示されている。
論文 参考訳(メタデータ) (2024-09-30T16:07:34Z) - Exploring and Enhancing the Transfer of Distribution in Knowledge Distillation for Autoregressive Language Models [62.5501109475725]
知識蒸留(KD)は、より小さな学生モデルを模倣するように訓練することで、大きな教師モデルを圧縮する技術である。
本稿では、教師ネットワークが小さなオンラインモジュールを統合し、学生モデルと同時学習するオンライン知識蒸留(OKD)について紹介する。
OKDは、様々なモデルアーキテクチャやサイズにおけるリードメソッドのパフォーマンスを達成または超え、トレーニング時間を最大4倍に短縮する。
論文 参考訳(メタデータ) (2024-09-19T07:05:26Z) - Generalizing Teacher Networks for Effective Knowledge Distillation Across Student Architectures [4.960025399247103]
Generic Teacher Network (GTN) は、知識を有限のアーキテクチャプールからサンプリングされた任意の学生モデルに効果的に伝達できる汎用的な教師を作成するための、一発のKD-awareトレーニングである。
本手法は, 総合的なKD効果の向上と, プール内の生徒間での総合教師のトレーニングコストの最小化を両立させる。
論文 参考訳(メタデータ) (2024-07-22T20:34:00Z) - Revisiting Knowledge Distillation for Autoregressive Language Models [88.80146574509195]
知識蒸留(KD)を改善するための簡易かつ効果的な適応型教育法(ATKD)を提案する。
ATKDの中核は、ロート学習を減らし、教育をより多様で柔軟なものにすることだ。
8つのLMタスクの実験は、ATKDの助けを借りて、様々なベースラインのKD手法が一貫した、重要なパフォーマンス向上を達成することを示した。
論文 参考訳(メタデータ) (2024-02-19T07:01:10Z) - Comparative Knowledge Distillation [102.35425896967791]
伝統的な知識蒸留(KD)は、頻繁な推論のために教師モデルに容易にアクセスできることを前提としている。
本稿では,教師モデルにおけるサンプルの解釈の微妙な違いを学生モデルに理解させるための比較知識蒸留(CKD)を提案する。
CKDは、アートデータ拡張とKDテクニックの状態を一貫して上回る。
論文 参考訳(メタデータ) (2023-11-03T21:55:33Z) - CES-KD: Curriculum-based Expert Selection for Guided Knowledge
Distillation [4.182345120164705]
本稿では,知識蒸留のためのカリキュラムエキスパート選択法(CES-KD)を提案する。
CES-KDは、階層化された教育カリキュラムを使用して学生ネットワークを徐々にガイドすべきという仮説に基づいている。
具体的には、画像の分類の難しさに起因したカリキュラムに基づいて、入力画像ごとに1人の教師を選択する段階的なTAベースのKD手法を提案する。
論文 参考訳(メタデータ) (2022-09-15T21:02:57Z) - Better Teacher Better Student: Dynamic Prior Knowledge for Knowledge
Distillation [70.92135839545314]
本研究では,教師の持つ特徴の一部を,特徴蒸留前の先行知識として統合した動的事前知識(DPK)を提案する。
DPKは,教員モデルと生徒モデルのパフォーマンスを正に相関させ,より大きな教員を適用することで生徒の精度をさらに高めることができる。
論文 参考訳(メタデータ) (2022-06-13T11:52:13Z) - Knowledge Distillation Beyond Model Compression [13.041607703862724]
知識蒸留(KD)は、より大規模な事前訓練されたモデルや(教師)モデルのアンサンブルの監督の下で、コンパクトモデル(学生)を訓練する効果的なモデル圧縮技術として一般的に考えられている。
本研究では,9つの異なるKD手法について広範な研究を行い,知識の獲得と伝達に関する幅広いアプローチについて述べる。
論文 参考訳(メタデータ) (2020-07-03T19:54:04Z) - Heterogeneous Knowledge Distillation using Information Flow Modeling [82.83891707250926]
教師モデルの様々な層を流れる情報の流れをモデル化して機能する新しいKD手法を提案する。
提案手法は, トレーニング過程の異なる段階において, 適切な監督手法を用いて, 上記の制限を克服することができる。
論文 参考訳(メタデータ) (2020-05-02T06:56:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。