論文の概要: A Neural Network Architecture Based on Attention Gate Mechanism for 3D Magnetotelluric Forward Modeling
- arxiv url: http://arxiv.org/abs/2503.11408v1
- Date: Fri, 14 Mar 2025 13:48:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-17 13:08:45.967500
- Title: A Neural Network Architecture Based on Attention Gate Mechanism for 3D Magnetotelluric Forward Modeling
- Title(参考訳): 3次元恒星フォワードモデリングのためのアテンションゲート機構に基づくニューラルネットワークアーキテクチャ
- Authors: Xin Zhong, Weiwei Ling, Kejia Pan, Pinxia Wu, Jiajing Zhang, Zhiliang Zhan, Wenbo Xiao,
- Abstract要約: 本稿では,3次元MTフォワードモデリングのためのアテンションゲーティング機構を統合したMTAGU-Netという新しいニューラルネットワークアーキテクチャを提案する。
デュアルパスアテンションゲーティングモジュールは、前方応答データ画像に基づいて設計され、エンコーダとデコーダの間のスキップ接続に埋め込まれる。
3次元ガウスランダム場(GRF)を利用した合成モデル生成法は,実世界の地質学的シナリオの電気的構造を正確に再現する。
- 参考スコア(独自算出の注目度): 1.5862483908050367
- License:
- Abstract: Traditional three-dimensional magnetotelluric (MT) numerical forward modeling methods, such as the finite element method (FEM) and finite volume method (FVM), suffer from high computational costs and low efficiency due to limitations in mesh refinement and computational resources. We propose a novel neural network architecture named MTAGU-Net, which integrates an attention gating mechanism for 3D MT forward modeling. Specifically, a dual-path attention gating module is designed based on forward response data images and embedded in the skip connections between the encoder and decoder. This module enables the fusion of critical anomaly information from shallow feature maps during the decoding of deep feature maps, significantly enhancing the network's capability to extract features from anomalous regions. Furthermore, we introduce a synthetic model generation method utilizing 3D Gaussian random field (GRF), which accurately replicates the electrical structures of real-world geological scenarios with high fidelity. Numerical experiments demonstrate that MTAGU-Net outperforms conventional 3D U-Net in terms of convergence stability and prediction accuracy, with the structural similarity index (SSIM) of the forward response data consistently exceeding 0.98. Moreover, the network can accurately predict forward response data on previously unseen datasets models, demonstrating its strong generalization ability and validating the feasibility and effectiveness of this method in practical applications.
- Abstract(参考訳): 有限要素法 (FEM) や有限体積法 (FVM) のような従来の3次元MT数値フォワードモデリング法は、メッシュ精錬や計算資源の制限により、高い計算コストと低い効率に悩まされている。
本稿では,3次元MTフォワードモデリングのためのアテンションゲーティング機構を統合したMTAGU-Netという新しいニューラルネットワークアーキテクチャを提案する。
具体的には、前方応答データ画像に基づいてデュアルパスアテンションゲーティングモジュールを設計し、エンコーダとデコーダの間のスキップ接続に埋め込まれる。
このモジュールは、深部特徴マップの復号中に浅部特徴マップから重要な異常情報を融合させ、異常領域から特徴を抽出するネットワークの機能を大幅に強化する。
さらに,3次元ガウスランダム場(GRF)を用いた合成モデル生成手法を提案し,実世界の地質学的シナリオの電気的構造を高精度に再現する。
MTAGU-Netは収束安定性と予測精度で従来の3次元U-Netより優れており、前方応答データの構造類似度指数(SSIM)は0.98以上である。
さらに、ネットワークは、以前に見つからなかったデータセットモデルの前方応答データを正確に予測し、その強力な一般化能力を示し、本手法の実用性および有効性を検証する。
関連論文リスト
- Generalized Factor Neural Network Model for High-dimensional Regression [50.554377879576066]
複素・非線形・雑音に隠れた潜在低次元構造を持つ高次元データセットをモデル化する課題に取り組む。
我々のアプローチは、非パラメトリック回帰、因子モデル、高次元回帰のためのニューラルネットワークの概念のシームレスな統合を可能にする。
論文 参考訳(メタデータ) (2025-02-16T23:13:55Z) - OccLoff: Learning Optimized Feature Fusion for 3D Occupancy Prediction [5.285847977231642]
3Dセマンティック占有予測は、自動運転の安全性を確保するために不可欠である。
既存のフュージョンベースの占有法では、画像の特徴に対して2次元から3次元のビュー変換を行うのが一般的である。
OccLoffは3次元占有予測のためにFeature Fusionを最適化するフレームワークである。
論文 参考訳(メタデータ) (2024-11-06T06:34:27Z) - 3-D Magnetotelluric Deep Learning Inversion Guided by Pseudo-Physical Information [11.303727578628575]
近年,ジョイントデータ駆動と物理駆動を併用したDLインバージョン法が注目されている。
本稿では、ニューラルネットワーク(NN)の前方モデリングを通して擬似物理情報を導入し、損失のこの部分を計算する。
本研究では,3次元MTインバージョンにおけるフィールドデータ環境をシミュレートし,マスキングとノイズ付加を含む新しい入力モードを提案する。
論文 参考訳(メタデータ) (2024-10-12T06:39:31Z) - TCCT-Net: Two-Stream Network Architecture for Fast and Efficient Engagement Estimation via Behavioral Feature Signals [58.865901821451295]
本稿では,新しい2ストリーム機能融合 "Tensor-Convolution and Convolution-Transformer Network" (TCCT-Net) アーキテクチャを提案する。
時間空間領域における意味のあるパターンをよりよく学習するために、ハイブリッド畳み込み変換器を統合する「CT」ストリームを設計する。
並行して、時間周波数領域からリッチなパターンを効率的に抽出するために、連続ウェーブレット変換(CWT)を用いて情報を2次元テンソル形式で表現する「TC」ストリームを導入する。
論文 参考訳(メタデータ) (2024-04-15T06:01:48Z) - SeisFusion: Constrained Diffusion Model with Input Guidance for 3D Seismic Data Interpolation and Reconstruction [26.02191880837226]
本研究では3次元地震データに適した新しい拡散モデル再構成フレームワークを提案する。
拡散モデルに3次元ニューラルネットワークアーキテクチャを導入し、2次元拡散モデルを3次元空間に拡張することに成功した。
本手法は、フィールドデータセットと合成データセットの両方に適用した場合、より優れた再構成精度を示す。
論文 参考訳(メタデータ) (2024-03-18T05:10:13Z) - Physics-Informed Machine Learning for Seismic Response Prediction OF Nonlinear Steel Moment Resisting Frame Structures [6.483318568088176]
PiML法は、非線形構造の地震応答をモデル化するために、科学的原理と物理法則をディープニューラルネットワークに統合する。
運動方程式を操作することは、システムの非線形性を学習し、物理的に解釈可能な結果の中で解を閉じ込めるのに役立つ。
結果、既存の物理誘導LSTMモデルよりも複雑なデータを処理し、他の非物理データ駆動ネットワークより優れている。
論文 参考訳(メタデータ) (2024-02-28T02:16:03Z) - Distance Weighted Trans Network for Image Completion [52.318730994423106]
本稿では,DWT(Distance-based Weighted Transformer)を利用した画像コンポーネント間の関係をよりよく理解するためのアーキテクチャを提案する。
CNNは、粗い事前の局所的なテクスチャ情報を強化するために使用される。
DWTブロックは、特定の粗いテクスチャやコヒーレントな視覚構造を復元するために使用される。
論文 参考訳(メタデータ) (2023-10-11T12:46:11Z) - ResFields: Residual Neural Fields for Spatiotemporal Signals [61.44420761752655]
ResFieldsは、複雑な時間的信号を効果的に表現するために設計された新しいネットワークのクラスである。
本稿では,ResFieldの特性を包括的に解析し,トレーニング可能なパラメータの数を減らすための行列分解手法を提案する。
スパースRGBDカメラからダイナミックな3Dシーンをキャプチャする効果を示すことで,ResFieldsの実用性を実証する。
論文 参考訳(メタデータ) (2023-09-06T16:59:36Z) - 3D Convolutional with Attention for Action Recognition [6.238518976312625]
現在の行動認識法は、計算コストの高いモデルを用いて行動の時間的依存を学習する。
本稿では,3次元畳み込み層,完全連結層,注目層からなる依存関係を学習するためのディープニューラルネットワークアーキテクチャを提案する。
提案手法はまず3D-CNNを用いて行動の空間的特徴と時間的特徴を学習し,その後,注意時間機構によってモデルが本質的な特徴に注意を向けることを支援する。
論文 参考訳(メタデータ) (2022-06-05T15:12:57Z) - Secrets of 3D Implicit Object Shape Reconstruction in the Wild [92.5554695397653]
コンピュータビジョン、ロボティクス、グラフィックスの様々な用途において、高精細な3Dオブジェクトをスパースから再構築することは重要です。
最近の神経暗黙的モデリング法は、合成データセットまたは高密度データセットで有望な結果を示す。
しかし、粗末でノイズの多い実世界のデータではパフォーマンスが悪い。
本論文では, 一般的な神経暗黙モデルの性能低下の根本原因を解析する。
論文 参考訳(メタデータ) (2021-01-18T03:24:48Z) - Probabilistic 3D surface reconstruction from sparse MRI information [58.14653650521129]
スパース2次元MR画像データとアレータティック不確実性予測から3次元表面再構成を同時に行うための新しい確率論的深層学習手法を提案する。
本手法は,3つの準直交MR画像スライスから,限られたトレーニングセットから大きな表面メッシュを再構成することができる。
論文 参考訳(メタデータ) (2020-10-05T14:18:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。