RICo: Refined In-Context Contribution for Automatic Instruction-Tuning Data Selection
- URL: http://arxiv.org/abs/2505.05327v2
- Date: Sun, 18 May 2025 11:24:09 GMT
- Title: RICo: Refined In-Context Contribution for Automatic Instruction-Tuning Data Selection
- Authors: Yixin Yang, Qingxiu Dong, Linli Yao, Fangwei Zhu, Zhifang Sui,
- Abstract summary: We propose a gradient-free method that quantifies the fine-grained contribution of individual samples to both task-level and global-level model performance.<n>We introduce a lightweight selection paradigm trained on RICo scores, enabling scalable data selection with a strictly linear inference complexity.
- Score: 29.459431336830267
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Data selection for instruction tuning is crucial for improving the performance of large language models (LLMs) while reducing training costs. In this paper, we propose Refined Contribution Measurement with In-Context Learning (RICo), a novel gradient-free method that quantifies the fine-grained contribution of individual samples to both task-level and global-level model performance. RICo enables more accurate identification of high-contribution data, leading to better instruction tuning. We further introduce a lightweight selection paradigm trained on RICo scores, enabling scalable data selection with a strictly linear inference complexity. Extensive experiments on three LLMs across 12 benchmarks and 5 pairwise evaluation sets demonstrate the effectiveness of RICo. Remarkably, on LLaMA3.1-8B, models trained on 15% of RICo-selected data outperform full datasets by 5.42% points and exceed the best performance of widely used selection methods by 2.06% points. We further analyze high-contribution samples selected by RICo, which show both diverse tasks and appropriate difficulty levels, rather than just the hardest ones.
Related papers
- Large Language Models are Demonstration Pre-Selectors for Themselves [57.101804269100185]
In-context learning (ICL) with large language models (LLMs) delivers strong few-shot performance by choosing few-shot demonstrations from the entire training data.<n>FEw yet Essential Demonstration prE-selectoR is a novel pre-selection framework that identifies a representative subset of demonstrations.<n>FEw yet Essential Demonstration prE-selectoR can reduce training data size by over 20% while maintaining performance.
arXiv Detail & Related papers (2025-06-06T12:29:03Z) - T-SHIRT: Token-Selective Hierarchical Data Selection for Instruction Tuning [5.963754140027611]
Token-Selective HIeRarchical Data Selection for Instruction Tuning (T-SHIRT) is a novel data selection framework.<n>We demonstrate that models instruction-tuned on a curated dataset can outperform those trained on the entire large-scale dataset.
arXiv Detail & Related papers (2025-06-02T04:59:17Z) - LEAD: Iterative Data Selection for Efficient LLM Instruction Tuning [22.242445543184264]
We propose LEAD, an efficient iterative data selection framework that accurately estimates sample utility entirely within the standard training loop.<n>Experiments show that LEAD significantly outperforms state-of-the-art methods, improving average model performance by 6.1%-10.8% while using only 2.5% of the training data and reducing overall training time by 5-10x.
arXiv Detail & Related papers (2025-05-12T10:57:51Z) - Meta-rater: A Multi-dimensional Data Selection Method for Pre-training Language Models [7.61977883644433]
We propose PRRC to evaluate data quality across Professionalism, Readability, Reasoning, and Cleanliness.<n>We introduce Meta-rater, a multi-dimensional data selection method that integrates these dimensions with existing quality metrics through learned optimal weightings.<n>Experiments demonstrate that Meta-rater doubles convergence speed for 1.3B parameter models and improves downstream task performance by 3.23, with scalable benefits observed in 3.3B models trained on 100B tokens.
arXiv Detail & Related papers (2025-04-19T06:12:33Z) - Add-One-In: Incremental Sample Selection for Large Language Models via a Choice-Based Greedy Paradigm [41.4789135538612]
This paper introduces a novel choice-based sample selection framework that shifts the focus from evaluating individual sample quality to comparing the contribution value of different samples.<n>Thanks to the advanced language understanding capabilities of Large Language Models (LLMs), we utilize LLMs to evaluate the value of each option during the selection process.
arXiv Detail & Related papers (2025-03-04T07:32:41Z) - A Systematic Examination of Preference Learning through the Lens of Instruction-Following [83.71180850955679]
We use a novel synthetic data generation pipeline to generate 48,000 instruction unique-following prompts.<n>With our synthetic prompts, we use two preference dataset curation methods - rejection sampling (RS) and Monte Carlo Tree Search (MCTS)<n>Experiments reveal that shared prefixes in preference pairs, as generated by MCTS, provide marginal but consistent improvements.<n>High-contrast preference pairs generally outperform low-contrast pairs; however, combining both often yields the best performance.
arXiv Detail & Related papers (2024-12-18T15:38:39Z) - Star-Agents: Automatic Data Optimization with LLM Agents for Instruction Tuning [71.2981957820888]
We propose a novel Star-Agents framework, which automates the enhancement of data quality across datasets.
The framework initially generates diverse instruction data with multiple LLM agents through a bespoke sampling method.
The generated data undergo a rigorous evaluation using a dual-model method that assesses both difficulty and quality.
arXiv Detail & Related papers (2024-11-21T02:30:53Z) - IterSelectTune: An Iterative Training Framework for Efficient Instruction-Tuning Data Selection [28.581257601441045]
We introduce $textbfIterSelectTune$, an efficient, cost-effective iterative training policy for selecting high-quality instruction data.
By fine-tuning on approximately 20% of the source data, our method consistently outperforms models fine-tuned on the full dataset.
arXiv Detail & Related papers (2024-10-17T11:48:57Z) - In2Core: Leveraging Influence Functions for Coreset Selection in Instruction Finetuning of Large Language Models [37.45103473809928]
We propose the In2Core algorithm, which selects a coreset by analyzing the correlation between training and evaluation samples with a trained model.
By applying our algorithm to instruction fine-tuning data of LLMs, we can achieve similar performance with just 50% of the training data.
arXiv Detail & Related papers (2024-08-07T05:48:05Z) - Take the essence and discard the dross: A Rethinking on Data Selection for Fine-Tuning Large Language Models [36.22392593103493]
Data selection for fine-tuning large language models (LLMs) aims to choose a high-quality subset from existing datasets.<n>Existing surveys overlook an in-depth exploration of the fine-tuning phase.<n>We introduce a novel three-stage scheme - comprising feature extraction, criteria design, and selector evaluation - to systematically categorize and evaluate these methods.
arXiv Detail & Related papers (2024-06-20T08:58:58Z) - Your Vision-Language Model Itself Is a Strong Filter: Towards
High-Quality Instruction Tuning with Data Selection [59.11430077029321]
We introduce a novel dataset selection method, Self-Filter, for vision-language models (VLMs)
In the first stage, we devise a scoring network to evaluate the difficulty of training instructions, which is co-trained with the VLM.
In the second stage, we use the trained score net to measure the difficulty of each instruction, select the most challenging samples, and penalize similar samples to encourage diversity.
arXiv Detail & Related papers (2024-02-19T20:08:48Z) - LESS: Selecting Influential Data for Targeted Instruction Tuning [64.78894228923619]
We propose LESS, an efficient algorithm to estimate data influences and perform Low-rank gradiEnt Similarity Search for instruction data selection.
We show that training on a LESS-selected 5% of the data can often outperform training on the full dataset across diverse downstream tasks.
Our method goes beyond surface form cues to identify data that the necessary reasoning skills for the intended downstream application.
arXiv Detail & Related papers (2024-02-06T19:18:04Z) - One-Shot Learning as Instruction Data Prospector for Large Language Models [108.81681547472138]
textscNuggets uses one-shot learning to select high-quality instruction data from extensive datasets.
We show that instruction tuning with the top 1% of examples curated by textscNuggets substantially outperforms conventional methods employing the entire dataset.
arXiv Detail & Related papers (2023-12-16T03:33:12Z) - From Quantity to Quality: Boosting LLM Performance with Self-Guided Data Selection for Instruction Tuning [52.257422715393574]
We introduce a self-guided methodology for Large Language Models (LLMs) to autonomously discern and select cherry samples from open-source datasets.
Our key innovation, the Instruction-Following Difficulty (IFD) metric, emerges as a pivotal metric to identify discrepancies between a model's expected responses and its intrinsic generation capability.
arXiv Detail & Related papers (2023-08-23T09:45:29Z) - Open-Set Semi-Supervised Learning for 3D Point Cloud Understanding [62.17020485045456]
It is commonly assumed in semi-supervised learning (SSL) that the unlabeled data are drawn from the same distribution as that of the labeled ones.
We propose to selectively utilize unlabeled data through sample weighting, so that only conducive unlabeled data would be prioritized.
arXiv Detail & Related papers (2022-05-02T16:09:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.