論文の概要: Dynamic Obstacle Avoidance with Bounded Rationality Adversarial Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2503.11467v1
- Date: Fri, 14 Mar 2025 14:54:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-17 13:05:36.869910
- Title: Dynamic Obstacle Avoidance with Bounded Rationality Adversarial Reinforcement Learning
- Title(参考訳): 境界付き相対性強化学習による動的障害物回避
- Authors: Jose-Luis Holgado-Alvarez, Aryaman Reddi, Carlo D'Eramo,
- Abstract要約: 本稿では,障害物を敵エージェントとしてモデル化するトレーニングプロセスにより,ロバスト性のあるナビゲーションポリシーを実現する新しい手法を提案する。
我々はこの手法を、量子応答適応強化学習(Hi-QARL)による多元的ポリシーと呼ぶ。
- 参考スコア(独自算出の注目度): 5.760394464143113
- License:
- Abstract: Reinforcement Learning (RL) has proven largely effective in obtaining stable locomotion gaits for legged robots. However, designing control algorithms which can robustly navigate unseen environments with obstacles remains an ongoing problem within quadruped locomotion. To tackle this, it is convenient to solve navigation tasks by means of a hierarchical approach with a low-level locomotion policy and a high-level navigation policy. Crucially, the high-level policy needs to be robust to dynamic obstacles along the path of the agent. In this work, we propose a novel way to endow navigation policies with robustness by a training process that models obstacles as adversarial agents, following the adversarial RL paradigm. Importantly, to improve the reliability of the training process, we bound the rationality of the adversarial agent resorting to quantal response equilibria, and place a curriculum over its rationality. We called this method Hierarchical policies via Quantal response Adversarial Reinforcement Learning (Hi-QARL). We demonstrate the robustness of our method by benchmarking it in unseen randomized mazes with multiple obstacles. To prove its applicability in real scenarios, our method is applied on a Unitree GO1 robot in simulation.
- Abstract(参考訳): 強化学習 (Reinforcement Learning, RL) は, 足歩行ロボットの安定した歩行歩行を得るのに大きく効果があることが証明されている。
しかし、障害物のある未確認環境を頑健にナビゲートできる制御アルゴリズムの設計は、四足歩行において現在も進行中の問題である。
この問題に対処するためには、低レベルの移動ポリシーと高レベルのナビゲーションポリシーを備えた階層的なアプローチでナビゲーションタスクを解くのが便利である。
重要なことは、ハイレベルなポリシーはエージェントの経路に沿った動的障害に対して堅牢である必要がある。
本研究では, 対向RLパラダイムに従って, 障害物を対向エージェントとしてモデル化する訓練プロセスにより, 航法方針を堅牢性で達成する新しい手法を提案する。
重要なことは、トレーニングプロセスの信頼性を向上させるために、量子応答平衡に依拠する敵エージェントの合理性を拘束し、その合理性にカリキュラムを置くことである。
我々は,この手法を量子応答逆強化学習(Hi-QARL)と呼ぶ。
複数の障害物を持つランダム化迷路でベンチマークすることで,本手法の頑健さを実証する。
実シナリオにおける適用性を証明するため,シミュレーションにおいてUnitree GO1ロボットに適用した。
関連論文リスト
- Multi-Objective Algorithms for Learning Open-Ended Robotic Problems [1.0124625066746598]
四足歩行は、自動運転車の普及に不可欠な複雑でオープンな問題である。
従来の強化学習アプローチは、トレーニングの不安定性とサンプルの非効率のため、しばしば不足する。
自動カリキュラム学習機構として多目的進化アルゴリズムを活用する新しい手法を提案する。
論文 参考訳(メタデータ) (2024-11-11T16:26:42Z) - Guided Reinforcement Learning for Robust Multi-Contact Loco-Manipulation [12.377289165111028]
強化学習(Reinforcement Learning, RL)は、各タスクに合わせた細かなマルコフ決定プロセス(MDP)設計を必要とすることが多い。
本研究は,マルチコンタクトロコ操作タスクの動作合成と制御に対する体系的アプローチを提案する。
モデルベース軌道から生成されたタスク毎の1つの実演のみを用いて,RLポリシーを訓練するためのタスク非依存のMDPを定義する。
論文 参考訳(メタデータ) (2024-10-17T17:46:27Z) - Aquatic Navigation: A Challenging Benchmark for Deep Reinforcement Learning [53.3760591018817]
ゲームエンジンとDeep Reinforcement Learningの統合の最近の進歩を利用して,水上ナビゲーションのための新しいベンチマーク環境を提案する。
具体的には、最も広く受け入れられているアルゴリズムの一つであるPPOに着目し、先進的なトレーニング手法を提案する。
実験により,これらの成分をうまく組み合わせることで,有望な結果が得られることが示された。
論文 参考訳(メタデータ) (2024-05-30T23:20:23Z) - RACER: Epistemic Risk-Sensitive RL Enables Fast Driving with Fewer Crashes [57.319845580050924]
本稿では,リスク感応制御と適応行動空間のカリキュラムを組み合わせた強化学習フレームワークを提案する。
提案アルゴリズムは,現実世界のオフロード運転タスクに対して,高速なポリシーを学習可能であることを示す。
論文 参考訳(メタデータ) (2024-05-07T23:32:36Z) - Distilling Reinforcement Learning Policies for Interpretable Robot Locomotion: Gradient Boosting Machines and Symbolic Regression [53.33734159983431]
本稿では, ニューラルRLポリシをより解釈可能な形式に蒸留する新しい手法を提案する。
我々は、RLを用いて専門家のニューラルネットワークポリシーを訓練し、(i)GBM、(ii)EBM、(iii)シンボリックポリシーに蒸留する。
論文 参考訳(メタデータ) (2024-03-21T11:54:45Z) - Nonprehensile Planar Manipulation through Reinforcement Learning with
Multimodal Categorical Exploration [8.343657309038285]
強化学習はそのようなロボットコントローラを開発するための強力なフレームワークである。
分類分布を用いたマルチモーダル探索手法を提案する。
学習したポリシは外部の障害や観測ノイズに対して堅牢であり、複数のプッシュ器でタスクにスケールできることが示される。
論文 参考訳(メタデータ) (2023-08-04T16:55:00Z) - Enhanced method for reinforcement learning based dynamic obstacle
avoidance by assessment of collision risk [0.0]
本稿では,障害物回避作業の難易度を制御できる一般的な訓練環境を提案する。
トレーニングをタスクの難しさにシフトすることで,最終的なパフォーマンスを大幅に向上できることがわかった。
論文 参考訳(メタデータ) (2022-12-08T07:46:42Z) - Leveraging Sequentiality in Reinforcement Learning from a Single
Demonstration [68.94506047556412]
本稿では,複雑なロボットタスクの制御ポリシーを1つの実演で学習するために,シーケンシャルなバイアスを活用することを提案する。
本研究は, ヒューマノイド移動やスタンドアップなど, 模擬課題のいくつかを, 前例のないサンプル効率で解くことができることを示す。
論文 参考訳(メタデータ) (2022-11-09T10:28:40Z) - Learning to Walk by Steering: Perceptive Quadrupedal Locomotion in
Dynamic Environments [25.366480092589022]
四足歩行ロボットは、環境の乱雑さや移動する障害物に応答して、頑丈で機敏な歩行行動を示す必要がある。
本稿では,知覚的移動の問題をハイレベルな意思決定に分解する,PreLUDEという階層型学習フレームワークを提案する。
シミュレーションおよびハードウェア実験において,本手法の有効性を実証する。
論文 参考訳(メタデータ) (2022-09-19T17:55:07Z) - XAI-N: Sensor-based Robot Navigation using Expert Policies and Decision
Trees [55.9643422180256]
本稿では,ロボットの密集した動的環境における衝突のない軌道を計算するためのセンサベース学習ナビゲーションアルゴリズムを提案する。
我々のアプローチは、sim2realパラダイムを用いて訓練された深層強化学習に基づくエキスパートポリシーを使用する。
シミュレーション環境でのアルゴリズムの利点を強調し、移動中の歩行者の間でClearpath Jackalロボットをナビゲートする。
論文 参考訳(メタデータ) (2021-04-22T01:33:10Z) - Reinforcement Learning for Robust Parameterized Locomotion Control of
Bipedal Robots [121.42930679076574]
シミュレーションにおけるロコモーションポリシをトレーニングするためのモデルフリー強化学習フレームワークを提案する。
ドメインランダム化は、システムダイナミクスのバリエーションにまたがる堅牢な振る舞いを学ぶためのポリシーを奨励するために使用されます。
本研究では、目標歩行速度、歩行高さ、旋回ヨーなどの多目的歩行行動について示す。
論文 参考訳(メタデータ) (2021-03-26T07:14:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。