Implicit Bias-Like Patterns in Reasoning Models
- URL: http://arxiv.org/abs/2503.11572v1
- Date: Fri, 14 Mar 2025 16:40:02 GMT
- Title: Implicit Bias-Like Patterns in Reasoning Models
- Authors: Messi H. J. Lee, Calvin K. Lai,
- Abstract summary: Implicit bias refers to automatic or spontaneous mental processes that shape perceptions, judgments, and behaviors.<n>We present a method called the Reasoning Model Implicit Association Test (RM-IAT) for studying implicit bias-like patterns in reasoning models.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Implicit bias refers to automatic or spontaneous mental processes that shape perceptions, judgments, and behaviors. Previous research examining `implicit bias' in large language models (LLMs) has often approached the phenomenon differently than how it is studied in humans by focusing primarily on model outputs rather than on model processing. To examine model processing, we present a method called the Reasoning Model Implicit Association Test (RM-IAT) for studying implicit bias-like patterns in reasoning models: LLMs that employ step-by-step reasoning to solve complex tasks. Using this method, we find that reasoning models require more tokens when processing association-incompatible information compared to association-compatible information. These findings suggest AI systems harbor patterns in processing information that are analogous to human implicit bias. We consider the implications of these implicit bias-like patterns for their deployment in real-world applications.
Related papers
- BiasConnect: Investigating Bias Interactions in Text-to-Image Models [73.76853483463836]
We introduce BiasConnect, a novel tool designed to analyze and quantify bias interactions in Text-to-Image models.<n>Our method provides empirical estimates that indicate how other bias dimensions shift toward or away from an ideal distribution when a given bias is modified.<n>We demonstrate the utility of BiasConnect for selecting optimal bias mitigation axes, comparing different TTI models on the dependencies they learn, and understanding the amplification of intersectional societal biases in TTI models.
arXiv Detail & Related papers (2025-03-12T19:01:41Z) - Self-supervised Analogical Learning using Language Models [59.64260218737556]
We propose SAL, a self-supervised analogical learning framework.<n> SAL mimics the human analogy process and trains models to explicitly transfer high-quality symbolic solutions.<n>We show that the resulting models outperform base language models on a wide range of reasoning benchmarks.
arXiv Detail & Related papers (2025-02-03T02:31:26Z) - No Equations Needed: Learning System Dynamics Without Relying on Closed-Form ODEs [56.78271181959529]
This paper proposes a conceptual shift to modeling low-dimensional dynamical systems by departing from the traditional two-step modeling process.
Instead of first discovering a closed-form equation and then analyzing it, our approach, direct semantic modeling, predicts the semantic representation of the dynamical system.
Our approach not only simplifies the modeling pipeline but also enhances the transparency and flexibility of the resulting models.
arXiv Detail & Related papers (2025-01-30T18:36:48Z) - On the Reasoning Capacity of AI Models and How to Quantify It [0.0]
Large Language Models (LLMs) have intensified the debate surrounding the fundamental nature of their reasoning capabilities.<n>While achieving high performance on benchmarks such as GPQA and MMLU, these models exhibit limitations in more complex reasoning tasks.<n>We propose a novel phenomenological approach that goes beyond traditional accuracy metrics to probe the underlying mechanisms of model behavior.
arXiv Detail & Related papers (2025-01-23T16:58:18Z) - Are Neural Topic Models Broken? [81.15470302729638]
We study the relationship between automated and human evaluation of topic models.
We find that neural topic models fare worse in both respects compared to an established classical method.
arXiv Detail & Related papers (2022-10-28T14:38:50Z) - General Greedy De-bias Learning [163.65789778416172]
We propose a General Greedy De-bias learning framework (GGD), which greedily trains the biased models and the base model like gradient descent in functional space.
GGD can learn a more robust base model under the settings of both task-specific biased models with prior knowledge and self-ensemble biased model without prior knowledge.
arXiv Detail & Related papers (2021-12-20T14:47:32Z) - Interpretable Data-Based Explanations for Fairness Debugging [7.266116143672294]
Gopher is a system that produces compact, interpretable, and causal explanations for bias or unexpected model behavior.
We introduce the concept of causal responsibility that quantifies the extent to which intervening on training data by removing or updating subsets of it can resolve the bias.
Building on this concept, we develop an efficient approach for generating the top-k patterns that explain model bias.
arXiv Detail & Related papers (2021-12-17T20:10:00Z) - Learning from others' mistakes: Avoiding dataset biases without modeling
them [111.17078939377313]
State-of-the-art natural language processing (NLP) models often learn to model dataset biases and surface form correlations instead of features that target the intended task.
Previous work has demonstrated effective methods to circumvent these issues when knowledge of the bias is available.
We show a method for training models that learn to ignore these problematic correlations.
arXiv Detail & Related papers (2020-12-02T16:10:54Z) - Debiasing Skin Lesion Datasets and Models? Not So Fast [17.668005682385175]
Models learned from data risk learning biases from that same data.
When models learn spurious correlations not found in real-world situations, their deployment for critical tasks, such as medical decisions, can be catastrophic.
We find out that, despite interesting results that point to promising future research, current debiasing methods are not ready to solve the bias issue for skin-lesion models.
arXiv Detail & Related papers (2020-04-23T21:07:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.