論文の概要: Lorecast: Layout-Aware Performance and Power Forecasting from Natural Language
- arxiv url: http://arxiv.org/abs/2503.11662v1
- Date: Fri, 14 Feb 2025 23:08:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-23 08:58:25.884938
- Title: Lorecast: Layout-Aware Performance and Power Forecasting from Natural Language
- Title(参考訳): Lorecast: 自然言語によるレイアウトアウェアのパフォーマンスと電力予測
- Authors: Runzhi Wang, Prianka Sengupta, Yiran Chen, Jiang Hu,
- Abstract要約: 我々はLorecastと呼ばれる新しい手法を導入し、英語のプロンプトを入力として受け取り、レイアウトを意識した性能と電力推定を迅速に生成する。
Lorecastは、分析後の数パーセントの誤差で精度が向上する。
- 参考スコア(独自算出の注目度): 5.827667713608297
- License:
- Abstract: In chip design planning, obtaining reliable performance and power forecasts for various design options is of critical importance. Traditionally, this involves using system-level models, which often lack accuracy, or trial synthesis, which is both labor-intensive and time-consuming. We introduce a new methodology, called Lorecast, which accepts English prompts as input to rapidly generate layout-aware performance and power estimates. This approach bypasses the need for HDL code development or synthesis, making it both fast and user-friendly. Experimental results demonstrate that Lorecast achieves accuracy within a few percent of error compared to post-layout analysis.
- Abstract(参考訳): チップ設計計画においては、様々な設計オプションに対する信頼性の高い性能と電力予測を得ることが重要である。
伝統的に、これはしばしば正確性に欠けるシステムレベルのモデルや、労働集約的かつ時間を要する試行的な合成を使用する。
我々はLorecastと呼ばれる新しい手法を導入し、英語のプロンプトを入力として受け取り、レイアウトを意識した性能と電力推定を迅速に生成する。
このアプローチは、HDLコード開発や合成の必要性を回避し、高速かつユーザフレンドリなものにします。
実験結果から,Lorecastは遅延後の解析に比べて誤差の数パーセント以内の精度が得られた。
関連論文リスト
- A Comparative Study of Pruning Methods in Transformer-based Time Series Forecasting [0.07916635054977067]
プルーニングは、ニューラルネットワークのパラメータ数を削減し、計算を保存するための確立されたアプローチである。
本研究では,これらのプルーニング戦略がモデルサイズ,演算,推論時間などの予測性能および計算面に与える影響について検討する。
ハードウェアとソフトウェアが対応する場合でも、構造化プルーニングは大幅な時間節約を達成できないことを実証する。
論文 参考訳(メタデータ) (2024-12-17T13:07:31Z) - Speculative Streaming: Fast LLM Inference without Auxiliary Models [21.454206732725563]
投機的ストリーミング(英: Speculative Streaming)は、単一モデル投機的復号法である。
これは、次のトークン予測から将来のn-gram予測に微調整対象を変更することで、ターゲットモデルにドラフトを融合させる。
1.8から3.1Xのデコーディングを、多様なタスクセットで高速化する。
論文 参考訳(メタデータ) (2024-02-16T23:36:43Z) - On-the-Fly Syntax Highlighting: Generalisation and Speed-ups [2.208443815105053]
オンザフライ構文強調は、視覚二次表記値を言語派生のそれぞれの文字と素早く関連付けるタスクである。
スピード制約はツールのユーザビリティを保証するために不可欠であり、オンラインソースコードにアクセスするエンドユーザの応答性を示す。
コードの理解力を高めるためには、正確なハイライトを達成することが重要です。
このようなリゾルバの開発コストに対処することは、多くのプログラミング言語のバージョンを考えると必須である。
論文 参考訳(メタデータ) (2024-02-13T19:43:22Z) - Disentangling Spatial and Temporal Learning for Efficient Image-to-Video
Transfer Learning [59.26623999209235]
ビデオの空間的側面と時間的側面の学習を両立させるDiSTを提案する。
DiSTの非絡み合い学習は、大量の事前学習パラメータのバックプロパゲーションを避けるため、非常に効率的である。
5つのベンチマークの大規模な実験は、DiSTが既存の最先端メソッドよりも優れたパフォーマンスを提供することを示す。
論文 参考訳(メタデータ) (2023-09-14T17:58:33Z) - Decoder Tuning: Efficient Language Understanding as Decoding [84.68266271483022]
本稿では,タスク固有のデコーダネットワークを出力側で最適化するデコーダチューニング(DecT)を提案する。
勾配ベースの最適化により、DecTは数秒以内にトレーニングでき、サンプル毎に1つのPクエリしか必要としない。
我々は、広範囲にわたる自然言語理解実験を行い、DecTが200ドル以上のスピードアップで最先端のアルゴリズムを大幅に上回っていることを示す。
論文 参考訳(メタデータ) (2022-12-16T11:15:39Z) - PromptCast: A New Prompt-based Learning Paradigm for Time Series
Forecasting [11.670324826998968]
既存の時系列予測手法では,数値列を入力とし,数値列を出力とする。
事前学習された言語基盤モデルの成功に触発されて、我々は新しい予測パラダイム、即時時系列予測を提案する。
この新たなタスクでは、数値入力と出力をプロンプトに変換し、予測タスクを文対文でフレーム化する。
論文 参考訳(メタデータ) (2022-09-20T10:15:35Z) - High-Level Synthesis Performance Prediction using GNNs: Benchmarking,
Modeling, and Advancing [21.8349113634555]
アジャイルハードウェア開発には、初期の設計段階から高速で正確な回路品質の評価が必要である。
本稿では,C/C++プログラムをグラフとして表現することで,グラフニューラルネットワーク(GNN)の表現力を生かした高速かつ正確な性能モデリングを提案する。
提案する予測器はHLSを最大40倍に上回り,既存の予測器を2倍から5倍に上回っている。
論文 参考訳(メタデータ) (2022-01-18T09:53:48Z) - CCVS: Context-aware Controllable Video Synthesis [95.22008742695772]
プレゼンテーションでは、古いビデオクリップから新しいビデオクリップを合成するための自己教師付き学習アプローチを紹介している。
時間的連続性のための文脈情報と微妙な制御のための補助情報に基づいて合成過程を規定する。
論文 参考訳(メタデータ) (2021-07-16T17:57:44Z) - Multi-timescale Representation Learning in LSTM Language Models [69.98840820213937]
言語モデルは、非常に短いから非常に長いまでの時間スケールで単語間の統計的依存関係を捉えなければならない。
我々は、長期記憶言語モデルにおけるメモリゲーティング機構が、パワーローの減衰を捉えることができるかの理論を導出した。
実験の結果,自然言語で学習したLSTM言語モデルは,この理論分布を近似することがわかった。
論文 参考訳(メタデータ) (2020-09-27T02:13:38Z) - Real-Time Execution of Large-scale Language Models on Mobile [49.32610509282623]
BERTの最良のモデル構造は,特定のデバイスに適合する計算サイズである。
我々のフレームワークは、モバイルデバイスのリソース仕様とリアルタイム仕様の両方を満たすための特定モデルを保証することができる。
具体的には、当社のモデルはCPUでは5.2倍、GPUでは4.1倍、BERTベースでは0.5-2%の精度損失がある。
論文 参考訳(メタデータ) (2020-09-15T01:59:17Z) - Exploring Software Naturalness through Neural Language Models [56.1315223210742]
ソフトウェア自然性仮説(Software Naturalness hypothesis)は、自然言語処理で使用されるのと同じ手法でプログラミング言語を理解することができると主張している。
この仮説は,事前学習されたトランスフォーマーベース言語モデルを用いて,コード解析タスクを実行することによって検討する。
論文 参考訳(メタデータ) (2020-06-22T21:56:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。