論文の概要: Conformal Prediction and Human Decision Making
- arxiv url: http://arxiv.org/abs/2503.11709v1
- Date: Wed, 12 Mar 2025 18:18:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-18 16:00:49.757849
- Title: Conformal Prediction and Human Decision Making
- Title(参考訳): コンフォーマル予測と人的意思決定
- Authors: Jessica Hullman, Yifan Wu, Dawei Xie, Ziyang Guo, Andrew Gelman,
- Abstract要約: 医学や金融といった高度な分野において、予測の不確実性を定量化する手法が求められている。
コンフォーマルな予測は、特定の平均カバレッジを持つ一連の予測を生成する一般的な方法として現れてきた。
しかし, 人的意思決定を支援するための共形予測セットの価値は, カバレッジ保証と意思決定者の目標と戦略との不安定な関係が原因で, いまだ解明されていない。
- 参考スコア(独自算出の注目度): 24.565425060007474
- License:
- Abstract: Methods to quantify uncertainty in predictions from arbitrary models are in demand in high-stakes domains like medicine and finance. Conformal prediction has emerged as a popular method for producing a set of predictions with specified average coverage, in place of a single prediction and confidence value. However, the value of conformal prediction sets to assist human decisions remains elusive due to the murky relationship between coverage guarantees and decision makers' goals and strategies. How should we think about conformal prediction sets as a form of decision support? Under what conditions do we expect the support they provide to be superior versus inferior to that of alternative presentations of predictive uncertainty? We outline a decision theoretic framework for evaluating predictive uncertainty as informative signals, then contrast what can be said within this framework about idealized use of calibrated probabilities versus conformal prediction sets. Informed by prior empirical results and theories of human decisions under uncertainty, we formalize a set of possible strategies by which a decision maker might use a prediction set. We identify ways in which conformal prediction sets and posthoc predictive uncertainty quantification more broadly are in tension with common goals and needs in human-AI decision making. We give recommendations for future research in predictive uncertainty quantification to support human decision makers.
- Abstract(参考訳): 任意のモデルからの予測の不確実性を定量化する方法は、医学や金融といった高度な領域で要求されている。
コンフォーマル予測は、単一の予測と信頼値の代わりに、特定の平均カバレッジで予測セットを生成する一般的な方法として登場した。
しかし, 人的意思決定を支援するための共形予測セットの価値は, カバレッジ保証と意思決定者の目標と戦略との不安定な関係が原因で, いまだ解明されていない。
整合予測セットを意思決定支援の一形態としてどう考えるべきか?
予測の不確実性のある代替プレゼンテーションよりも、彼らの提供するサポートが優れていると、どのような条件で期待できますか?
予測の不確かさを情報的信号として評価するための決定理論の枠組みを概説し, キャリブレーションされた確率の理想的利用と共形予測集合との対比を行った。
不確実性の下での事前の実証結果と人的決定の理論により、意思決定者が予測セットを使用する可能性のある戦略のセットを定式化する。
我々は,共形予測セットとポストホック予測の不確実性定量化が,人間とAIの意思決定において共通の目標やニーズと緊張関係にある方法を特定する。
我々は,人間の意思決定を支援するための予測不確実性定量化の今後の研究を推奨する。
関連論文リスト
- Bin-Conditional Conformal Prediction of Fatalities from Armed Conflict [0.5312303275762104]
ユーザ定義サブセット間の一貫したカバレッジ率を確保することにより、標準コンフォメーション予測を強化するビン条件コンフォメーション予測(BCCP)を導入する。
標準共形予測と比較すると、BCCPは局所的カバレッジを改善するが、これはわずかに広い予測間隔のコストがかかる。
論文 参考訳(メタデータ) (2024-10-18T14:41:42Z) - Conformal Prediction Sets Improve Human Decision Making [5.151594941369301]
本研究では,人間による意思決定を支援するために,共形予測セットの有用性について検討する。
その結果、人間に共形予測を与えると、その精度は、同じカバレッジ保証の固定サイズ予測セットよりも向上することがわかった。
論文 参考訳(メタデータ) (2024-01-24T19:01:22Z) - Robust Design and Evaluation of Predictive Algorithms under Unobserved Confounding [2.8498944632323755]
選択的に観測されたデータにおける予測アルゴリズムの頑健な設計と評価のための統一的なフレームワークを提案する。
我々は、選択されていないユニットと選択されたユニットの間で、平均して結果がどの程度異なるかという一般的な仮定を課す。
我々は,大規模な予測性能推定値のクラスにおける境界値に対するバイアス付き機械学習推定器を開発する。
論文 参考訳(メタデータ) (2022-12-19T20:41:44Z) - Making Decisions under Outcome Performativity [9.962472413291803]
我々は、新しい最適性の概念、パフォーマンス的全予測を導入する。
性能的全予測器は、最適な決定ルールを同時に符号化する単一の予測器である。
本研究では,性能予測の自然な制約の下で,効率的な性能予測器が存在することを示す。
論文 参考訳(メタデータ) (2022-10-04T17:04:47Z) - Uncertainty estimation of pedestrian future trajectory using Bayesian
approximation [137.00426219455116]
動的トラフィックシナリオでは、決定論的予測に基づく計画は信頼できない。
著者らは、決定論的アプローチが捉えられない近似を用いて予測中の不確実性を定量化する。
将来の状態の不確実性に対する降雨重量と長期予測の影響について検討した。
論文 参考訳(メタデータ) (2022-05-04T04:23:38Z) - Dense Uncertainty Estimation [62.23555922631451]
本稿では,ニューラルネットワークと不確実性推定手法について検討し,正確な決定論的予測と確実性推定の両方を実現する。
本研究では,アンサンブルに基づく手法と生成モデルに基づく手法の2つの不確実性推定法について検討し,それらの長所と短所を,完全/半端/弱度に制御されたフレームワークを用いて説明する。
論文 参考訳(メタデータ) (2021-10-13T01:23:48Z) - CovarianceNet: Conditional Generative Model for Correct Covariance
Prediction in Human Motion Prediction [71.31516599226606]
本稿では,将来の軌道の予測分布に関連する不確かさを正確に予測する手法を提案する。
我々のアプローチであるCovariaceNetは、ガウス潜在変数を持つ条件付き生成モデルに基づいている。
論文 参考訳(メタデータ) (2021-09-07T09:38:24Z) - Private Prediction Sets [72.75711776601973]
機械学習システムは、個人のプライバシーの確実な定量化と保護を必要とする。
これら2つのデシラタを共同で扱う枠組みを提案する。
本手法を大規模コンピュータビジョンデータセット上で評価する。
論文 参考訳(メタデータ) (2021-02-11T18:59:11Z) - When Does Uncertainty Matter?: Understanding the Impact of Predictive
Uncertainty in ML Assisted Decision Making [68.19284302320146]
我々は,異なるレベルの専門知識を持つ人々が,異なるタイプの予測不確実性にどう反応するかを評価するために,ユーザスタディを実施している。
その結果,後続の予測分布を示すことは,MLモデルの予測との相違点が小さくなることがわかった。
このことは、後続の予測分布は、人間の分布の種類や専門性を考慮し、注意を払って使用するべき有用な決定支援として役立つ可能性があることを示唆している。
論文 参考訳(メタデータ) (2020-11-12T02:23:53Z) - Counterfactual Predictions under Runtime Confounding [74.90756694584839]
本研究は, 過去のデータからすべての関連要因を抽出した環境で, 事実予測タスクについて検討する。
本稿では,この環境下での対実予測モデル学習のための2次ロバスト手法を提案する。
論文 参考訳(メタデータ) (2020-06-30T15:49:05Z) - Fast, Optimal, and Targeted Predictions using Parametrized Decision
Analysis [0.0]
我々はベイズ決定解析のためのパラメータ化された行動のクラスを開発し、最適でスケーラブルで単純な目標予測を生成する。
全国健康栄養検査調査の身体活動データに対する予測が作成されている。
論文 参考訳(メタデータ) (2020-06-23T15:55:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。