Physics-based simulation ontology: an ontology to support modelling and reuse of data for physics-based simulation
- URL: http://arxiv.org/abs/2503.11723v1
- Date: Fri, 14 Mar 2025 01:51:42 GMT
- Title: Physics-based simulation ontology: an ontology to support modelling and reuse of data for physics-based simulation
- Authors: Hyunmin Cheong, Adrian Butscher,
- Abstract summary: The work presents an ontology developed for physics-based simulation in engineering design, called Physics-based Simulation Ontology (PSO)<n>PSO has two parts: PSO-Physics, which consists of terms and relations used to model physical phenomena, and PSO-Sim, which consists of terms used to represent the information artefacts that are about the physical phenomena PSO-Physics.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The current work presents an ontology developed for physics-based simulation in engineering design, called Physics-based Simulation Ontology (PSO). The purpose of the ontology is to assist in modelling the physical phenomenon of interest in a veridical manner, while capturing the necessary and reusable information for physics-based simulation solvers. The development involved extending an existing upper ontology, Basic Formal Ontology (BFO), to define lower-level terms of PSO. PSO has two parts: PSO-Physics, which consists of terms and relations used to model physical phenomena based on the perspective of classical mechanics involving partial differential equations, and PSO-Sim, which consists of terms used to represent the information artefacts that are about the physical phenomena modelled with PSO-Physics. The former terms are used to model the physical phenomenon of interest independent of solver-specific interpretations, which can be reused across different solvers, while the latter terms are used to instantiate solver-specific input data. A case study involving two simulation solvers was conducted to demonstrate this capability of PSO. Discussion around the benefits and limitations of using BFO for the current work is also provided, which should be valuable for any future work that extends an existing upper ontology to develop ontologies for engineering applications.
Related papers
- Physics Encoded Blocks in Residual Neural Network Architectures for Digital Twin Models [2.8720819157502344]
This paper presents a generic approach based on a novel physics-encoded residual neural network architecture.
Our method combines physics blocks as mathematical operators from physics-based models with learning blocks comprising feed-forward layers.
Compared to conventional neural network-based methods, our method improves generalizability with substantially low data requirements.
arXiv Detail & Related papers (2024-11-18T11:58:20Z) - PhyRecon: Physically Plausible Neural Scene Reconstruction [81.73129450090684]
We introduce PHYRECON, the first approach to leverage both differentiable rendering and differentiable physics simulation to learn implicit surface representations.
Central to this design is an efficient transformation between SDF-based implicit representations and explicit surface points.
Our results also exhibit superior physical stability in physical simulators, with at least a 40% improvement across all datasets.
arXiv Detail & Related papers (2024-04-25T15:06:58Z) - ContPhy: Continuum Physical Concept Learning and Reasoning from Videos [86.63174804149216]
ContPhy is a novel benchmark for assessing machine physical commonsense.
We evaluated a range of AI models and found that they still struggle to achieve satisfactory performance on ContPhy.
We also introduce an oracle model (ContPRO) that marries the particle-based physical dynamic models with the recent large language models.
arXiv Detail & Related papers (2024-02-09T01:09:21Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
We propose a framework that combines Symbolic Regression (SR) and Discrete Exterior Calculus (DEC) for the automated discovery of physical models.
DEC provides building blocks for the discrete analogue of field theories, which are beyond the state-of-the-art applications of SR to physical problems.
We prove the effectiveness of our methodology by re-discovering three models of Continuum Physics from synthetic experimental data.
arXiv Detail & Related papers (2023-10-10T13:23:05Z) - Neural Lumped Parameter Differential Equations with Application in
Friction-Stir Processing [2.158307833088858]
Lumped parameter methods aim to simplify the evolution of spatially-extended or continuous physical systems.
We build upon the notion of the Universal Differential Equation to construct data-driven models for reducing dynamics to that of a lumped parameter.
arXiv Detail & Related papers (2023-04-18T15:11:27Z) - Differentiable physics-enabled closure modeling for Burgers' turbulence [0.0]
We discuss an approach using the differentiable physics paradigm that combines known physics with machine learning to develop closure models for turbulence problems.
We train a series of models that incorporate varying degrees of physical assumptions on an a posteriori loss function to test the efficacy of models.
We find that constraining models with inductive biases in the form of partial differential equations that contain known physics or existing closure approaches produces highly data-efficient, accurate, and generalizable models.
arXiv Detail & Related papers (2022-09-23T14:38:01Z) - Constructing Neural Network-Based Models for Simulating Dynamical
Systems [59.0861954179401]
Data-driven modeling is an alternative paradigm that seeks to learn an approximation of the dynamics of a system using observations of the true system.
This paper provides a survey of the different ways to construct models of dynamical systems using neural networks.
In addition to the basic overview, we review the related literature and outline the most significant challenges from numerical simulations that this modeling paradigm must overcome.
arXiv Detail & Related papers (2021-11-02T10:51:42Z) - Physics-guided Deep Markov Models for Learning Nonlinear Dynamical
Systems with Uncertainty [6.151348127802708]
We propose a physics-guided framework, termed Physics-guided Deep Markov Model (PgDMM)
The proposed framework takes advantage of the expressive power of deep learning, while retaining the driving physics of the dynamical system.
arXiv Detail & Related papers (2021-10-16T16:35:12Z) - Physics-Integrated Variational Autoencoders for Robust and Interpretable
Generative Modeling [86.9726984929758]
We focus on the integration of incomplete physics models into deep generative models.
We propose a VAE architecture in which a part of the latent space is grounded by physics.
We demonstrate generative performance improvements over a set of synthetic and real-world datasets.
arXiv Detail & Related papers (2021-02-25T20:28:52Z) - A physics-informed operator regression framework for extracting
data-driven continuum models [0.0]
We present a framework for discovering continuum models from high fidelity molecular simulation data.
Our approach applies a neural network parameterization of governing physics in modal space.
We demonstrate the effectiveness of our framework for a variety of physics, including local and nonlocal diffusion processes and single and multiphase flows.
arXiv Detail & Related papers (2020-09-25T01:13:51Z) - Visual Grounding of Learned Physical Models [66.04898704928517]
Humans intuitively recognize objects' physical properties and predict their motion, even when the objects are engaged in complicated interactions.
We present a neural model that simultaneously reasons about physics and makes future predictions based on visual and dynamics priors.
Experiments show that our model can infer the physical properties within a few observations, which allows the model to quickly adapt to unseen scenarios and make accurate predictions into the future.
arXiv Detail & Related papers (2020-04-28T17:06:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.