論文の概要: Near-Term Fermionic Simulation with Subspace Noise Tailored Quantum Error Mitigation
- arxiv url: http://arxiv.org/abs/2503.11785v1
- Date: Fri, 14 Mar 2025 18:20:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-18 12:28:47.230472
- Title: Near-Term Fermionic Simulation with Subspace Noise Tailored Quantum Error Mitigation
- Title(参考訳): サブスペースノイズによる量子エラー除去による近接場フェルミオンシミュレーション
- Authors: Miha Papič, Manuel G. Algaba, Emiliano Godinez-Ramirez, Inés de Vega, Adrian Auer, Fedor Šimkovic IV, Alessio Calzona,
- Abstract要約: 本稿では,SNT(Subspace Noise Tailoring)アルゴリズムを導入し,Symmetry Verification(SV)とPEC(Probabilistic Error Cancellation)QEM(Probabilistic Error Cancellation)の低バイアスを効率よく組み合わせた。
様々な局所フェルミオン-量子ビット符号化を用いて,スピン-1/2フェルミ-ハバードモデル(FHM)の時間発展をシミュレーションし,本手法の性能について検討した。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Quantum error mitigation (QEM) has emerged as a powerful tool for the extraction of useful quantum information from quantum devices. Here, we introduce the Subspace Noise Tailoring (SNT) algorithm, which efficiently combines the cheap cost of Symmetry Verification (SV) and low bias of Probabilistic Error Cancellation (PEC) QEM techniques. We study the performance of our method by simulating the Trotterized time evolution of the spin-1/2 Fermi-Hubbard model (FHM) using a variety of local fermion-to-qubit encodings, which define a computational subspace through a set of stabilizers, the measurement of which can be used to post-select noisy quantum data. We study different combinations of QEM and encodings and uncover a rich phase diagram of optimal combinations, depending on the hardware performance, system size and available shot budget. We then demonstrate how SNT extends the reach of current noisy quantum computers in terms of the number of fermionic lattice sites and the number of Trotter steps, and quantify the required hardware performance beyond which a noisy device may outperform classical computational methods.
- Abstract(参考訳): QEM(Quantum error mitigation)は、量子デバイスから有用な量子情報を抽出するための強力なツールとして登場した。
本稿では,SNT(Subspace Noise Tailoring, Subspace Noise Tailoring, SNT)アルゴリズムを提案する。
本研究では,スピン-1/2フェルミ-ハバードモデル (FHM) の時間発展を様々な局所フェルミオン-量子ビットエンコーディングを用いてシミュレーションし,安定化器の集合を通じて計算部分空間を定義し,その測定値を用いてノイズ後量子データを生成する手法を提案する。
QEMとエンコーディングの異なる組み合わせについて検討し、ハードウェアの性能、システムサイズ、利用可能なショット予算に応じて最適な組み合わせの豊富な位相図を明らかにする。
次に、SNTは、フェルミオン格子点の数とトロッターステップの数で現在のノイズ量子コンピュータの範囲を拡大し、ノイズデバイスが古典的な計算手法より優れた性能を発揮するために必要なハードウェア性能を定量化する。
関連論文リスト
- Bayesian Quantum Amplitude Estimation [49.1574468325115]
本稿では,量子振幅推定のための雑音対応ベイズアルゴリズムであるBAEを紹介する。
我々は,BAEがハイゼンベルク限界推定を達成し,他の手法と比較した。
論文 参考訳(メタデータ) (2024-12-05T18:09:41Z) - Machine Learning Methods as Robust Quantum Noise Estimators [0.0]
従来の機械学習モデルでは、回路構成を分析して量子ノイズを推定する方法を示す。
提案手法は,回路のロバスト性を低い誤差率で正確に予測できることを示す。
これらの技術は、量子コードの品質とセキュリティを評価するために使用することができ、より信頼性の高い量子製品に繋がる。
論文 参考訳(メタデータ) (2024-09-23T09:00:12Z) - Quantum Compiling with Reinforcement Learning on a Superconducting Processor [55.135709564322624]
超伝導プロセッサのための強化学習型量子コンパイラを開発した。
短絡の新規・ハードウェア対応回路の発見能力を示す。
本研究は,効率的な量子コンパイルのためのハードウェアによるソフトウェア設計を実証する。
論文 参考訳(メタデータ) (2024-06-18T01:49:48Z) - Optimized noise-assisted simulation of the Lindblad equation with
time-dependent coefficients on a noisy quantum processor [0.6990493129893112]
ノイズは、NISQ(Noisy Intermediate-Scale Quantum)デバイス上のオープンシステムのデジタル量子シミュレーションにおける資産となる。
最適化されたデコヒーレンス率制御方式を導入し、計算要求を桁違いに削減する。
論文 参考訳(メタデータ) (2024-02-12T12:48:03Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEAはノイズ適応型量子回路のインタイムスパース探索である。
1)トレーニング中の暗黙の回路容量と(2)雑音の頑健さの2つの主要な目標を達成することを目的としている。
提案手法は, 量子ゲート数の半減と回路実行の2倍の時間節約で, 最先端の計算結果を確立する。
論文 参考訳(メタデータ) (2024-01-10T22:33:00Z) - Quantum Simulation of Dissipative Energy Transfer via Noisy Quantum
Computer [0.40964539027092917]
雑音の多いコンピュータ上でのオープン量子システムの力学をシミュレートする実用的な手法を提案する。
提案手法は,IBM-Q実機におけるゲートノイズを利用して,2量子ビットのみを用いて計算を行う。
最後に、トロッター展開を行う際の量子回路の深さの増大に対処するため、短期力学シミュレーションを拡張するために転送テンソル法(TTM)を導入した。
論文 参考訳(メタデータ) (2023-12-03T13:56:41Z) - Multi-sequence alignment using the Quantum Approximate Optimization
Algorithm [0.0]
本稿では、変分量子近似最適化アルゴリズム(QAOA)を用いた多重系列アライメント問題のハミルトニアン定式化と実装について述べる。
我々は、量子シミュレーターと実際の量子コンピュータ上での性能の両方において、我々のQAOA-MSAアルゴリズムの小さな例を考える。
調査されたMSAのインスタンスに対する理想的な解決策は、浅いp5量子回路でサンプリングされた最も可能性の高い状態であることが示されているが、現在のデバイスにおけるノイズのレベルは依然として深刻な課題である。
論文 参考訳(メタデータ) (2023-08-23T12:46:24Z) - Adaptive quantum error mitigation using pulse-based inverse evolutions [0.0]
本稿では,ターゲット装置の雑音レベルに適応する適応KIKというQEM手法を提案する。
この手法の実装は実験的にシンプルであり、トモグラフィ情報や機械学習の段階は含まない。
我々は、IBM量子コンピュータと数値シミュレーションを用いて、我々の研究結果を実証した。
論文 参考訳(メタデータ) (2023-03-09T02:50:53Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
本稿では,量子状態の知識を必要とせず,量子回路の可換性を検証する回路指向対称性検証を提案する。
特に、従来の量子領域形式を回路指向安定化器に一般化するフーリエ時間安定化器(STS)手法を提案する。
論文 参考訳(メタデータ) (2021-12-27T21:15:35Z) - Pulse-level noisy quantum circuits with QuTiP [53.356579534933765]
我々はQuTiPの量子情報処理パッケージであるqutip-qipに新しいツールを導入する。
これらのツールはパルスレベルで量子回路をシミュレートし、QuTiPの量子力学解法と制御最適化機能を活用する。
シミュレーションプロセッサ上で量子回路がどのようにコンパイルされ、制御パルスがターゲットハミルトニアンに作用するかを示す。
論文 参考訳(メタデータ) (2021-05-20T17:06:52Z) - Error mitigation and quantum-assisted simulation in the error corrected
regime [77.34726150561087]
量子コンピューティングの標準的なアプローチは、古典的にシミュレート可能なフォールトトレラントな演算セットを促進するという考え方に基づいている。
量子回路の古典的準確率シミュレーションをどのように促進するかを示す。
論文 参考訳(メタデータ) (2021-03-12T20:58:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。