論文の概要: End-to-End Edge AI Service Provisioning Framework in 6G ORAN
- arxiv url: http://arxiv.org/abs/2503.11933v1
- Date: Sat, 15 Mar 2025 00:48:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-18 14:56:57.618935
- Title: End-to-End Edge AI Service Provisioning Framework in 6G ORAN
- Title(参考訳): 6G ORANのエッジAIサービスプロビジョニングフレームワーク
- Authors: Yun Tang, Udhaya Chandhar Srinivasan, Benjamin James Scott, Obumneme Umealor, Dennis Kevogo, Weisi Guo,
- Abstract要約: 本稿では,O-RAN rAppsとしてデプロイされたLarge Language Model (LLM)エージェントを活用する,新しいエッジAIおよびネットワークサービスオーケストレーションフレームワークを提案する。
提案システムでは,ユーザのユースケース記述をデプロイ可能なAIサービスと対応するネットワーク構成に変換することで,インタラクティブかつ直感的なオーケストレーションを可能にする。
- 参考スコア(独自算出の注目度): 7.6934511825411045
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the advent of 6G, Open Radio Access Network (O-RAN) architectures are evolving to support intelligent, adaptive, and automated network orchestration. This paper proposes a novel Edge AI and Network Service Orchestration framework that leverages Large Language Model (LLM) agents deployed as O-RAN rApps. The proposed LLM-agent-powered system enables interactive and intuitive orchestration by translating the user's use case description into deployable AI services and corresponding network configurations. The LLM agent automates multiple tasks, including AI model selection from repositories (e.g., Hugging Face), service deployment, network adaptation, and real-time monitoring via xApps. We implement a prototype using open-source O-RAN projects (OpenAirInterface and FlexRIC) to demonstrate the feasibility and functionality of our framework. Our demonstration showcases the end-to-end flow of AI service orchestration, from user interaction to network adaptation, ensuring Quality of Service (QoS) compliance. This work highlights the potential of integrating LLM-driven automation into 6G O-RAN ecosystems, paving the way for more accessible and efficient edge AI ecosystems.
- Abstract(参考訳): 6Gの出現に伴い、Open Radio Access Network(O-RAN)アーキテクチャは進化し、インテリジェントで適応的で自動的なネットワークオーケストレーションをサポートする。
本稿では,O-RAN rAppsとしてデプロイされたLarge Language Model (LLM)エージェントを活用する,新しいエッジAIおよびネットワークサービスオーケストレーションフレームワークを提案する。
提案システムでは,ユーザのユースケース記述をデプロイ可能なAIサービスと対応するネットワーク構成に変換することで,インタラクティブかつ直感的なオーケストレーションを可能にする。
LLMエージェントは、リポジトリ(Hugging Faceなど)からのAIモデル選択、サービスデプロイメント、ネットワーク適応、xAppsによるリアルタイム監視など、複数のタスクを自動化する。
我々はオープンソースのO-RANプロジェクト(OpenAirInterfaceとFlexRIC)を使ってプロトタイプを実装し、フレームワークの実現可能性と機能を示します。
私たちのデモでは、ユーザインタラクションからネットワーク適応、品質・オブ・サービス(QoS)コンプライアンスの確保に至るまで、AIサービスオーケストレーションのエンドツーエンドフローを実演しています。
この研究は、LLM駆動の自動化を6G O-RANエコシステムに統合し、よりアクセスしやすく効率的なエッジAIエコシステムを実現する可能性を強調している。
関連論文リスト
- Building AI Service Repositories for On-Demand Service Orchestration in 6G AI-RAN [7.375775031391254]
本稿では、6GネットワークにおけるAIサービスのオーケストレーションに影響を与える重要な属性を体系的に同定し分類する。
サービスパッケージング、デプロイメント、ランタイムプロファイリングを自動化する、オープンソースのLLM支援ツールチェーンを紹介します。
論文 参考訳(メタデータ) (2025-04-13T16:40:58Z) - Towards Agentic AI Networking in 6G: A Generative Foundation Model-as-Agent Approach [35.05793485239977]
本稿では,AIエージェント間のインタラクション,協調学習,知識伝達を支援する新しいフレームワークであるAgentNetを提案する。
本稿では,デジタルツイン方式の産業自動化とメタバース方式のインフォテインメントシステムという,2つの応用シナリオについて考察する。
論文 参考訳(メタデータ) (2025-03-20T00:48:44Z) - Intelligent Mobile AI-Generated Content Services via Interactive Prompt Engineering and Dynamic Service Provisioning [55.641299901038316]
AI生成コンテンツは、ネットワークエッジで協調的なMobile AIGC Service Providers(MASP)を編成して、リソース制約のあるユーザにユビキタスでカスタマイズされたコンテンツを提供することができる。
このようなパラダイムは2つの大きな課題に直面している: 1) 生のプロンプトは、ユーザーが特定のAIGCモデルで経験していないために、しばしば生成品質が低下する。
本研究では,Large Language Model (LLM) を利用してカスタマイズしたプロンプトコーパスを生成する対話型プロンプトエンジニアリング機構を開発し,政策模倣に逆強化学習(IRL)を用いる。
論文 参考訳(メタデータ) (2025-02-17T03:05:20Z) - AutoGLM: Autonomous Foundation Agents for GUIs [51.276965515952]
我々は、グラフィカルユーザインタフェース(GUI)を介してデジタルデバイスを自律的に制御するための基礎エージェントとして設計された、ChatGLMファミリーの新しいシリーズであるAutoGLMを紹介する。
実世界のGUIインタラクションのための実践的基礎エージェントシステムとしてAutoGLMを開発した。
評価では、AutoGLMが複数のドメインにまたがって有効であることを示す。
論文 参考訳(メタデータ) (2024-10-28T17:05:10Z) - Internet of Agents: Weaving a Web of Heterogeneous Agents for Collaborative Intelligence [79.5316642687565]
既存のマルチエージェントフレームワークは、多種多様なサードパーティエージェントの統合に苦慮することが多い。
我々はこれらの制限に対処する新しいフレームワークであるInternet of Agents (IoA)を提案する。
IoAはエージェント統合プロトコル、インスタントメッセージのようなアーキテクチャ設計、エージェントのチーム化と会話フロー制御のための動的メカニズムを導入している。
論文 参考訳(メタデータ) (2024-07-09T17:33:24Z) - ROS-LLM: A ROS framework for embodied AI with task feedback and structured reasoning [74.58666091522198]
非専門家による直感的なロボットプログラミングのためのフレームワークを提案する。
ロボットオペレーティングシステム(ROS)からの自然言語のプロンプトと文脈情報を活用する
我々のシステムは,大規模言語モデル (LLM) を統合し,非専門家がチャットインタフェースを通じてシステムにタスク要求を記述できるようにする。
論文 参考訳(メタデータ) (2024-06-28T08:28:38Z) - Exploiting and Securing ML Solutions in Near-RT RIC: A Perspective of an xApp [9.199924426745948]
Open Radio Access Networks (O-RAN) は破壊的な技術として登場している。
O-RANは、5Gと6Gのデプロイメント以上のネットワークプロバイダにとって魅力的なものだ。
RAN Intelligent Controllers (RIC)上でxAppsやrAppsのような機械学習(ML)ソリューションなどのカスタムアプリケーションをデプロイする能力は、ネットワーク機能やリソースの最適化において大きな可能性を秘めている。
しかし、O-RANとRCCのオープン性、初期標準、分散アーキテクチャは、複数の攻撃ベクトルを通じて悪用可能な脆弱性を多数導入している。
論文 参考訳(メタデータ) (2024-06-18T06:12:57Z) - When Large Language Model Agents Meet 6G Networks: Perception,
Grounding, and Alignment [100.58938424441027]
モバイル端末とエッジサーバの協調を利用した6GネットワークにおけるAIエージェントの分割学習システムを提案する。
提案システムでは,LLMのための新しいモデルキャッシングアルゴリズムを導入し,コンテキストにおけるモデル利用を改善する。
論文 参考訳(メタデータ) (2024-01-15T15:20:59Z) - LLMind: Orchestrating AI and IoT with LLM for Complex Task Execution [18.816077341295628]
我々は,IoTデバイス間の効果的なコラボレーションを可能にするタスク指向AIフレームワークであるLLMindを紹介する。
脳の機能的特殊化理論に触発されて、我々のフレームワークはLLMとドメイン固有のAIモジュールを統合する。
複数のドメイン固有のAIモジュールとIoTデバイスのコラボレーションを含む複雑なタスクは、コントロールスクリプトを介して実行される。
論文 参考訳(メタデータ) (2023-12-14T14:57:58Z) - Toward 6G Native-AI Network: Foundation Model based Cloud-Edge-End Collaboration Framework [55.73948386625618]
データ、AIモデル、運用パラダイムの観点から、6GネイティブAIを達成する上での課題を分析します。
基礎モデルに基づく6GネイティブAIフレームワークを提案し、専門家の知識の統合方法を提供し、2種類のPFMのカスタマイズを提示し、ネイティブAIフレームワークの新たな運用パラダイムを概説する。
論文 参考訳(メタデータ) (2023-10-26T15:19:40Z) - Actor-Critic Network for O-RAN Resource Allocation: xApp Design,
Deployment, and Analysis [3.8073142980733]
Open Radio Access Network (O-RAN)は、オープンネス、インテリジェンス、自動制御を可能にする新しいRANアーキテクチャを導入した。
RAN Intelligent Controller (RIC)は、RANコントローラの設計とデプロイのためのプラットフォームを提供する。
xAppsは、機械学習(ML)アルゴリズムを活用してほぼリアルタイムで動作することで、この責任を負うアプリケーションである。
論文 参考訳(メタデータ) (2022-09-26T19:12:18Z) - OrchestRAN: Network Automation through Orchestrated Intelligence in the
Open RAN [27.197110488665157]
ネットワークインテリジェンスのための新しいオーケストレーションフレームワークOrchestRANを提示・試作する。
OrchestRANは、リアルタイムのRAN Intelligent Controller(RIC)で実行するために設計されており、ネットワークオペレータ(NO)が高レベルな制御/推論の目的を指定することができる。
オープンRANにおけるインテリジェンスを編成する問題はNPハードであり、現実のアプリケーションをサポートするために低複雑さのソリューションを設計する。
論文 参考訳(メタデータ) (2022-01-14T19:20:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。