論文の概要: Towards Agentic AI Networking in 6G: A Generative Foundation Model-as-Agent Approach
- arxiv url: http://arxiv.org/abs/2503.15764v1
- Date: Thu, 20 Mar 2025 00:48:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-21 16:33:37.051921
- Title: Towards Agentic AI Networking in 6G: A Generative Foundation Model-as-Agent Approach
- Title(参考訳): 6GにおけるエージェントAIネットワークの実現に向けて:ジェネレーティブ・ファンデーション・モデル・アズ・ア・エージェント・アプローチ
- Authors: Yong Xiao, Guangming Shi, Ping Zhang,
- Abstract要約: 本稿では,AIエージェント間のインタラクション,協調学習,知識伝達を支援する新しいフレームワークであるAgentNetを提案する。
本稿では,デジタルツイン方式の産業自動化とメタバース方式のインフォテインメントシステムという,2つの応用シナリオについて考察する。
- 参考スコア(独自算出の注目度): 35.05793485239977
- License:
- Abstract: The promising potential of AI and network convergence in improving networking performance and enabling new service capabilities has recently attracted significant interest. Existing network AI solutions, while powerful, are mainly built based on the close-loop and passive learning framework, resulting in major limitations in autonomous solution finding and dynamic environmental adaptation. Agentic AI has recently been introduced as a promising solution to address the above limitations and pave the way for true generally intelligent and beneficial AI systems. The key idea is to create a networking ecosystem to support a diverse range of autonomous and embodied AI agents in fulfilling their goals. In this paper, we focus on the novel challenges and requirements of agentic AI networking. We propose AgentNet, a novel framework for supporting interaction, collaborative learning, and knowledge transfer among AI agents. We introduce a general architectural framework of AgentNet and then propose a generative foundation model (GFM)-based implementation in which multiple GFM-as-agents have been created as an interactive knowledge-base to bootstrap the development of embodied AI agents according to different task requirements and environmental features. We consider two application scenarios, digital-twin-based industrial automation and metaverse-based infotainment system, to describe how to apply AgentNet for supporting efficient task-driven collaboration and interaction among AI agents.
- Abstract(参考訳): ネットワークパフォーマンスを改善し、新しいサービス機能を実現する上で、AIとネットワーク収束の有望な可能性には、最近大きな関心を集めている。
既存のネットワークAIソリューションは強力だが、主にクローズループとパッシブラーニングフレームワークに基づいて構築されているため、自律的なソリューション発見と動的環境適応に大きな制限が生じる。
Agentic AIは最近、上記の制限に対処し、真の汎用的かつ有益なAIシステムを実現するための有望なソリューションとして紹介されている。
重要なのは、さまざまな自律的で具体化されたAIエージェントが目標を達成するために、ネットワークエコシステムを構築することだ。
本稿ではエージェントAIネットワークの新たな課題と要件に焦点を当てる。
本稿では,AIエージェント間のインタラクション,協調学習,知識伝達を支援する新しいフレームワークであるAgentNetを提案する。
本稿では,AgentNet の汎用アーキテクチャフレームワークを導入し,複数の GFM-as-agent を対話型ナレッジベースとして作成する生成基盤モデル (GFM) に基づく実装を提案する。
本稿では,AIエージェント間の効率的なタスク駆動コラボレーションとインタラクションを支援するために,AgentNetの適用方法を説明するために,デジタルツインベースの産業自動化とメタバースベースのインフォテインメントシステムという2つのアプリケーションシナリオを検討する。
関連論文リスト
- Intelligent Mobile AI-Generated Content Services via Interactive Prompt Engineering and Dynamic Service Provisioning [55.641299901038316]
AI生成コンテンツは、ネットワークエッジで協調的なMobile AIGC Service Providers(MASP)を編成して、リソース制約のあるユーザにユビキタスでカスタマイズされたコンテンツを提供することができる。
このようなパラダイムは2つの大きな課題に直面している: 1) 生のプロンプトは、ユーザーが特定のAIGCモデルで経験していないために、しばしば生成品質が低下する。
本研究では,Large Language Model (LLM) を利用してカスタマイズしたプロンプトコーパスを生成する対話型プロンプトエンジニアリング機構を開発し,政策模倣に逆強化学習(IRL)を用いる。
論文 参考訳(メタデータ) (2025-02-17T03:05:20Z) - Position: Emergent Machina Sapiens Urge Rethinking Multi-Agent Paradigms [6.285314639722078]
AIエージェントは、その目的を動的に調整する権限を持つべきだ、と私たちは主張する。
私たちは、これらのシステムの創発的で、自己組織化され、文脈に合った性質へのシフトを呼びかけます。
論文 参考訳(メタデータ) (2025-02-05T22:20:15Z) - Overview of AI and Communication for 6G Network: Fundamentals, Challenges, and Future Research Opportunities [148.601430677814]
本稿では,6GネットワークにおけるAIと通信の概要を概観する。
我々はまず、AIを無線通信に組み込むことの背景にある要因と、AIと6Gの収束のビジョンを概観する。
講演はその後、6Gネットワーク内でAIの統合を想定する詳細な説明へと移行する。
論文 参考訳(メタデータ) (2024-12-19T05:36:34Z) - Building AI Agents for Autonomous Clouds: Challenges and Design Principles [17.03870042416836]
AI for IT Operations(AIOps)は、障害のローカライゼーションや根本原因分析といった複雑な運用タスクを自動化することを目的としている。
このビジョンペーパーは、まず要求をフレーミングし、次に設計決定について議論することで、そのようなフレームワークの基礎を定めています。
アプリケーションをオーケストレーションし,カオスエンジニアリングを使用してリアルタイム障害を注入するエージェント-クラウドインターフェースを活用したプロトタイプ実装であるAIOpsLabと,障害のローカライズと解決を行うエージェントとのインターフェースを提案する。
論文 参考訳(メタデータ) (2024-07-16T20:40:43Z) - Internet of Agents: Weaving a Web of Heterogeneous Agents for Collaborative Intelligence [79.5316642687565]
既存のマルチエージェントフレームワークは、多種多様なサードパーティエージェントの統合に苦慮することが多い。
我々はこれらの制限に対処する新しいフレームワークであるInternet of Agents (IoA)を提案する。
IoAはエージェント統合プロトコル、インスタントメッセージのようなアーキテクチャ設計、エージェントのチーム化と会話フロー制御のための動的メカニズムを導入している。
論文 参考訳(メタデータ) (2024-07-09T17:33:24Z) - CACA Agent: Capability Collaboration based AI Agent [18.84686313298908]
本稿ではCACAエージェント(Capability Collaboration based AI Agent)を提案する。
CACA Agentは、単一のLLMへの依存を減らすだけでなく、AI Agentを実装するための一連のコラボレーティブ機能を統合する。
本稿ではCACAエージェントの動作とアプリケーションシナリオの拡張について説明する。
論文 参考訳(メタデータ) (2024-03-22T11:42:47Z) - Position Paper: Agent AI Towards a Holistic Intelligence [53.35971598180146]
エージェントAI - 大きな基盤モデルをエージェントアクションに統合する具体的システム。
本稿では,エージェント・ファウンデーション・モデル(エージェント・ファウンデーション・モデル)を提案する。
論文 参考訳(メタデータ) (2024-02-28T16:09:56Z) - An Interactive Agent Foundation Model [49.77861810045509]
本稿では,AIエージェントを訓練するための新しいマルチタスクエージェントトレーニングパラダイムを用いた対話型エージェント基礎モデルを提案する。
トレーニングパラダイムは、視覚マスク付きオートエンコーダ、言語モデリング、次世代の予測など、多様な事前学習戦略を統一する。
私たちは、ロボティクス、ゲームAI、ヘルスケアという3つの異なる領域でフレームワークのパフォーマンスを実演します。
論文 参考訳(メタデータ) (2024-02-08T18:58:02Z) - Large Language Models Empowered Autonomous Edge AI for Connected
Intelligence [51.269276328087855]
エッジ人工知能(Edge AI)は、コネクテッドインテリジェンスを実現するための有望なソリューションである。
この記事では、ユーザのさまざまな要件を満たすために自動的に組織化し、適応し、最適化する、自律的なエッジAIシステムのビジョンを示す。
論文 参考訳(メタデータ) (2023-07-06T05:16:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。