Twin-Polaritons: Classical versus Quantum Features in Polaritonic Spectra
- URL: http://arxiv.org/abs/2503.11968v2
- Date: Tue, 25 Mar 2025 01:56:22 GMT
- Title: Twin-Polaritons: Classical versus Quantum Features in Polaritonic Spectra
- Authors: Iren Simko, Norah M. Hoffmann,
- Abstract summary: We report a new feature, the twin-polariton, an additional splitting beyond the usual primary resonant polariton splitting.<n>This finding reveals a novel mechanism to tune a quantum feature using a classical one, offering new insights into the fundamental nature of polaritonic systems.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Understanding whether a polaritonic phenomenon is inherently quantum or classical is essential for developing accurate models and optimizing experimental designs. We investigate this question in the context of polaritonic rotational-vibrational spectra and report a new feature, the twin-polariton, an additional splitting beyond the usual primary resonant polariton splitting that arises from light-matter entanglement. Through ab-initio calculations of HCl molecules and a corresponding model system coupled to a cavity, we demonstrate that the twin-polariton persists in the many-molecule case and follows the same linear dependence on coupling strength as the primary resonant polariton splitting. This finding reveals a novel mechanism to tune a quantum feature using a classical one, offering new insights into the fundamental nature of polaritonic systems.
Related papers
- Quantum optical scattering by macroscopic lossy objects: A general approach [55.2480439325792]
We develop a general approach to describe the scattering of quantum light by a lossy macroscopic object placed in vacuum.<n>We exploit the input-output relation to connect the output state of the field to the input one.<n>We analyze the impact of the classical transmission and absorption dyadics on the transitions from ingoing to outgoing s-polariton.
arXiv Detail & Related papers (2024-11-27T17:44:29Z) - Bridging classical and quantum approaches in optical polarimetry: Predicting polarization-entangled photon behavior in scattering environments [36.89950360824034]
We explore quantum-based optical polarimetry as a potential diagnostic tool for biological tissues.
We develop a theoretical and experimental framework to understand polarization-entangled photon behavior in scattering media.
arXiv Detail & Related papers (2024-11-09T10:17:47Z) - Dispersive Non-reciprocity between a Qubit and a Cavity [24.911532779175175]
We present an experimental study of a non-reciprocal dispersive-type interaction between a transmon qubit and a superconducting cavity.
We show that the qubit-cavity dynamics is well-described in a wide parameter regime by a simple non-reciprocal master-equation model.
arXiv Detail & Related papers (2023-07-07T17:19:18Z) - Chiral polaritons based on achiral Fabry-Perot cavities using apparent
circular dichroism [0.0]
Polariton states with high levels of chiral dissymmetry offer exciting prospects for quantum information, sensing, and lasing applications.
Here, we theoretically demonstrate how chiral polaritons can be realized by combining (high quality factor) achiral Fabry-Perot cavities with samples exhibiting a phenomenon known as "apparent circular dichroism" (ACD)
By introducing a quantum electrodynamical theory of ACD, we identify the design rules based on which the dissymmetry of chiral polaritons can be optimized.
arXiv Detail & Related papers (2022-08-30T18:00:02Z) - Spectral Engineering of Cavity-Protected Polaritons in an Atomic
Ensemble with Controlled Disorder [0.0]
We observe the transition from a disordered regime to a polaritonic one with only two resonances.
We realize a dynamically modulated Tavis-Cumming model to produce a comb of narrow polariton resonances protected from the disorder.
arXiv Detail & Related papers (2022-08-25T13:40:32Z) - Interplay between polarization and quantum correlations of confined
polaritons [0.0]
We investigate polariton quantum correlations in a coherently driven box cavity in the low driving regime.
We obtain analytical expressions for the steady-state polarization-resolved polariton populations and second-order correlation functions.
We show that systems with large biexciton binding energies, such as atomically thin semiconductors, are promising platforms for realizing strong polariton antibunching.
arXiv Detail & Related papers (2021-04-28T02:45:54Z) - Non-Markovian perturbation theories for phonon effects in
strong-coupling cavity quantum electrodynamics [0.0]
phonon interactions are inevitable in cavity quantum electrodynamical systems based on solid-state emitters or fluorescent molecules.
It remains a significant theoretical challenge to describe such effects in a computationally efficient manner.
We consider four non-Markovian perturbative master equation approaches to describe such dynamics.
arXiv Detail & Related papers (2021-03-26T08:32:19Z) - Generalization of the Tavis-Cummings model for multi-level anharmonic
systems [0.0]
We study a collective ensemble of identical multi-level anharmonic emitters and their dipolar interaction with a photonic cavity mode.
The permutational properties of the system allow identifying symmetry classified submanifolds in the energy spectrum.
We expect these findings to be applicable in the study of non-linear spectroscopy and chemistry of polaritons.
arXiv Detail & Related papers (2021-01-23T10:40:00Z) - Nonlinear level attraction of cavity axion polariton in
antiferromagnetic topological insulator [18.199592421807928]
Axion quasiparticles, emerging in topological insulators, were predicted to strongly couple with the light and generate the so-called axion polariton.
Here, we demonstrate that there arises a gapless level attraction in cavity axion polariton of antiferromagnetic topological insulators.
Our results reveal a new mechanism of level attractions, and open up new roads for exploring the axion polariton with cavity technologies.
arXiv Detail & Related papers (2020-11-10T05:38:12Z) - Semi-classical quantisation of magnetic solitons in the anisotropic
Heisenberg quantum chain [21.24186888129542]
We study the structure of semi-classical eigenstates in a weakly-anisotropic quantum Heisenberg spin chain.
Special emphasis is devoted to the simplest types of solutions, describing precessional motion and elliptic magnetisation waves.
arXiv Detail & Related papers (2020-10-14T16:46:11Z) - Non-reciprocal Cavity Polariton with Atoms Strongly Coupled to Optical
Cavity [21.013802417752025]
We experimentally demonstrate a chiral cavity QED system with multiple atoms strongly coupled to a Fabry-Perot cavity.
By polarizing the internal quantum state of the atoms, the time-reversal symmetry of the atom-cavity interaction is broken.
The strongly coupled atom-cavity system can be described by non-reciprocal quasiparticles, i.e., the cavity polariton.
arXiv Detail & Related papers (2019-11-23T02:32:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.