論文の概要: Is Multi-Agent Debate (MAD) the Silver Bullet? An Empirical Analysis of MAD in Code Summarization and Translation
- arxiv url: http://arxiv.org/abs/2503.12029v1
- Date: Sat, 15 Mar 2025 07:30:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-18 12:34:07.751079
- Title: Is Multi-Agent Debate (MAD) the Silver Bullet? An Empirical Analysis of MAD in Code Summarization and Translation
- Title(参考訳): マルチエージェント討論(MAD)は銀の弾丸か?コードの要約と翻訳におけるMADの実証分析
- Authors: Jina Chun, Qihong Chen, Jiawei Li, Iftekhar Ahmed,
- Abstract要約: マルチエージェント・ディベート (MAD) システムは,大規模言語モデル (LLM) 間の構造化された議論を可能にする
MADは、役割特異的なエージェント、動的相互作用、構造化された意思決定を通じて、散発的な思考を促進する。
本研究では,2つのソフトウェア工学(SE)タスクにおけるMADの有効性について検討する。
- 参考スコア(独自算出の注目度): 10.038721196640864
- License:
- Abstract: Large Language Models (LLMs) have advanced autonomous agents' planning and decision-making, yet they struggle with complex tasks requiring diverse expertise and multi-step reasoning. Multi-Agent Debate (MAD) systems, introduced in NLP research, address this gap by enabling structured debates among LLM-based agents to refine solutions iteratively. MAD promotes divergent thinking through role-specific agents, dynamic interactions, and structured decision-making. Recognizing parallels between Software Engineering (SE) and collaborative human problem-solving, this study investigates MAD's effectiveness on two SE tasks. We adapt MAD systems from NLP, analyze agent interactions to assess consensus-building and iterative refinement, and propose two enhancements targeting observed weaknesses. Our findings show that structured debate and collaboration improve problem-solving and yield strong performance in some cases, highlighting MAD's potential for SE automation while identifying areas for exploration.
- Abstract(参考訳): 大規模言語モデル(LLM)には高度な自律エージェントの計画と意思決定があるが、多様な専門知識と多段階推論を必要とする複雑なタスクに苦労する。
NLP研究で導入されたマルチエージェント・ディベート(MAD)システムは、LCMをベースとしたエージェント間の構造化された議論を反復的に解決し、このギャップに対処する。
MADは、役割特異的なエージェント、動的相互作用、構造化された意思決定を通じて、散発的思考を促進する。
本研究は,ソフトウェア工学(SE)と協調的人間の問題解決の類似性を認識し,2つのSEタスクにおけるMADの有効性について検討する。
我々は,NLPからMADシステムを適用し,エージェントのインタラクションを分析し,コンセンサス構築と反復的改善を評価し,観測された弱点を対象とする2つの拡張を提案する。
本研究は,構造化された議論と協調によって問題解決が向上し,いくつかの事例において高い性能が得られることを示し,探索対象地域を特定しながら,SE自動化の可能性を強調した。
関連論文リスト
- If Multi-Agent Debate is the Answer, What is the Question? [19.246022410492692]
マルチエージェント・ディベート(MAD)は,大規模言語モデルの事実的正確性と推論品質を高めるための,有望なアプローチとして登場した。
その可能性にもかかわらず、MAD研究は評価実践における重大な欠点に悩まされている。
本稿では,9つのベンチマークにおいて5つの代表的MAD手法を体系的に評価する。
論文 参考訳(メタデータ) (2025-02-12T21:01:10Z) - Enhancing LLM Reasoning with Multi-Path Collaborative Reactive and Reflection agents [26.645038049346255]
マルチパス推論(Multi-Path Reasoning:RR-MP)フレームワークを用いたリアクティブおよびリフレクションエージェントを提案する。
提案手法は,マルチパス推論機構を用いて科学的推論精度を向上させる。
道徳的シナリオ,大学レベルの物理,数学に関わる課題について,ゼロショットと少数ショットの評価を行った。
論文 参考訳(メタデータ) (2024-12-31T13:11:20Z) - Progressive Multimodal Reasoning via Active Retrieval [64.74746997923967]
多段階多モーダル推論タスクは、大規模言語モデル(MLLM)に重大な課題をもたらす
本稿では,MLLMの推論能力の向上を目的とした汎用フレームワークAR-MCTSを提案する。
我々は,AR-MCTSがサンプリングの多様性と精度を最適化し,信頼性の高いマルチモーダル推論を実現することを示す。
論文 参考訳(メタデータ) (2024-12-19T13:25:39Z) - Insight-V: Exploring Long-Chain Visual Reasoning with Multimodal Large Language Models [64.1799100754406]
大きな言語モデル(LLM)は、さらなる推論によって拡張された能力と信頼性を示す。
LLM推論の改善へのさまざまな取り組みにもかかわらず、高品質な長鎖推論データと最適化されたトレーニングパイプラインは、まだビジョン言語タスクでは不十分である。
本稿では,1)複雑なマルチモーダルタスクに対する長大かつ堅牢な推論データを生成するための初期の取り組みであるInsight-Vと,2)MLLMの推論能力を高めるための効果的なトレーニングパイプラインを提案する。
論文 参考訳(メタデータ) (2024-11-21T18:59:55Z) - Multi-Agent Large Language Models for Conversational Task-Solving [0.0]
対話型タスク解決における新たな主人公として,マルチエージェントシステムが誕生する。
複雑さの異なるタスク間で、マルチエージェントの議論がどのように機能するかは、いまだ不明である。
2022年から2024年までの20のマルチエージェント研究の分類について提案する。
論文 参考訳(メタデータ) (2024-10-30T11:38:13Z) - Textualized Agent-Style Reasoning for Complex Tasks by Multiple Round LLM Generation [49.27250832754313]
我々は、llmベースの自律エージェントフレームワークであるAgentCOTを紹介する。
それぞれのステップで、AgentCOTはアクションを選択し、それを実行して、証拠を裏付ける中間結果を得る。
エージェントCOTの性能を高めるための2つの新しい戦略を導入する。
論文 参考訳(メタデータ) (2024-09-19T02:20:06Z) - Optimizing Collaboration of LLM based Agents for Finite Element Analysis [1.5039745292757671]
本稿では,Large Language Models (LLM) 内の複数のエージェント間の相互作用について,プログラミングおよびコーディングタスクの文脈で検討する。
我々はAutoGenフレームワークを利用してエージェント間の通信を容易にし、各セットアップの40のランダムランからの成功率に基づいて異なる構成を評価する。
論文 参考訳(メタデータ) (2024-08-23T23:11:08Z) - Large Multimodal Agents: A Survey [78.81459893884737]
大規模言語モデル(LLM)は、テキストベースのAIエージェントのパワーで優れたパフォーマンスを実現している。
LLMを利用したAIエージェントをマルチモーダルドメインに拡張することに焦点を当てた、新たな研究トレンドがある。
本総説は, この急速に発展する分野において, 今後の研究に有用な洞察とガイドラインを提供することを目的としている。
論文 参考訳(メタデータ) (2024-02-23T06:04:23Z) - Cooperation, Competition, and Maliciousness: LLM-Stakeholders Interactive Negotiation [52.930183136111864]
我々は,大言語モデル(LLM)を評価するためにスコーラブルネゴシエーション(scorable negotiations)を提案する。
合意に達するには、エージェントは強力な算術、推論、探索、計画能力を持つ必要がある。
我々は、新しいゲームを作成し、進化するベンチマークを持つことの難しさを増大させる手順を提供する。
論文 参考訳(メタデータ) (2023-09-29T13:33:06Z) - Encouraging Divergent Thinking in Large Language Models through Multi-Agent Debate [85.3444184685235]
複数のエージェントが"tit for tat"の状態で議論を表現するマルチエージェント議論(MAD)フレームワークを提案し、審査員が議論プロセスを管理して最終解を得る。
我々のフレームワークは、深い熟考を必要とするタスクに役立ちそうなLSMにおける散発的思考を奨励する。
論文 参考訳(メタデータ) (2023-05-30T15:25:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。