論文の概要: Language Models for Automated Classification of Brain MRI Reports and Growth Chart Generation
- arxiv url: http://arxiv.org/abs/2503.12143v1
- Date: Sat, 15 Mar 2025 13:59:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-18 12:33:02.596927
- Title: Language Models for Automated Classification of Brain MRI Reports and Growth Chart Generation
- Title(参考訳): 脳MRIレポートの自動分類と成長チャート生成のための言語モデル
- Authors: Maryam Daniali, Shivaram Karandikar, Dabriel Zimmerman, J. Eric Schmitt, Matthew J. Buczek, Benjamin Jung, Laura Mercedes, Jakob Seidlitz, Vanessa Troiani, Lena Dorfschmidt, Eren Kafadar, Remo Williams, Susan Sotardi, Arastoo Vosough, Scott Haag, Jenna M. Schabdach, Aaron Alexander-Bloch,
- Abstract要約: 我々は、脳MRIの報告を正常または異常と分類するために、微調整言語モデル(LM)を開発した。
また、通常のレポート分類のための主要なLMであるGemini 1.5-Proの推論機能についても検討する。
我々のLMは、ラジオロジーレポートのスケーラブルな分析を提供し、大規模なデータセットにおける脳MRIの自動分類を可能にします。
- 参考スコア(独自算出の注目度): 1.16602699944655
- License:
- Abstract: Clinically acquired brain MRIs and radiology reports are valuable but underutilized resources due to the challenges of manual analysis and data heterogeneity. We developed fine-tuned language models (LMs) to classify brain MRI reports as normal (reports with limited pathology) or abnormal, fine-tuning BERT, BioBERT, ClinicalBERT, and RadBERT on 44,661 reports. We also explored the reasoning capabilities of a leading LM, Gemini 1.5-Pro, for normal report categorization. Automated image processing and modeling generated brain growth charts from LM-classified normal scans, comparing them to human-derived charts. Fine-tuned LMs achieved high classification performance (F1-Score >97%), with unbalanced training mitigating class imbalance. Performance was robust on out-of-distribution data, with full text outperforming summary (impression) sections. Gemini 1.5-Pro showed a promising categorization performance, especially with clinical inference. LM-derived brain growth charts were nearly identical to human-annotated charts (r = 0.99, p < 2.2e-16). Our LMs offer scalable analysis of radiology reports, enabling automated classification of brain MRIs in large datasets. One application is automated generation of brain growth charts for benchmarking quantitative image features. Further research is needed to address data heterogeneity and optimize LM reasoning.
- Abstract(参考訳): 臨床的に取得された脳MRIと放射線学の報告は、手動解析とデータ不均一性の課題のため、有用だが未利用の資源である。
44,661例において,脳MRI所見を正常または異常,微調整されたBERT,BioBERT,CricerBERT,RadBERTと分類するための微調整言語モデル(LM)を開発した。
また,通常のレポート分類のための主要なLMであるGemini 1.5-Proの推論機能についても検討した。
自動画像処理とモデリングは、LM分類された正常スキャンから脳成長チャートを生成し、それらを人間由来のチャートと比較した。
微調整されたLMは高い分類性能(F1-Score >97%)を達成し、不均衡な訓練はクラス不均衡を緩和した。
アウト・オブ・ディストリビューションデータでは、パフォーマンスが堅牢で、完全なテキストの要約(印象)セクションよりも優れていた。
Gemini 1.5-Proは有望な分類性能を示した。
LM由来の脳成長チャートはヒトの注釈図(r = 0.99, p < 2.2e-16)とほぼ同一であった。
我々のLMは、ラジオロジーレポートのスケーラブルな分析を提供し、大規模なデータセットにおける脳MRIの自動分類を可能にします。
1つの応用は、定量的画像特徴のベンチマークのための脳成長チャートの自動生成である。
データの不均一性に対処し、LM推論を最適化するためには、さらなる研究が必要である。
関連論文リスト
- Enhancing Brain Age Estimation with a Multimodal 3D CNN Approach Combining Structural MRI and AI-Synthesized Cerebral Blood Volume Data [14.815462507141163]
脳年齢ギャップ推定(BrainAGE)は、脳年齢を理解するための神経画像バイオマーカーである。
現在のアプローチでは、主にT1強調MRI(T1w MRI)データを使用し、構造脳情報のみをキャプチャする。
我々は,VGGに基づくアーキテクチャを用いたディープラーニングモデルを開発し,線形回帰を用いた予測を組み合わせた。
我々のモデルは3.95年の平均絶対誤差(MAE)とテストセットの$R2$ 0.943を達成し、類似したデータでトレーニングされた既存のモデルよりも優れていた。
論文 参考訳(メタデータ) (2024-12-01T21:54:08Z) - Knowledge-Guided Prompt Learning for Lifespan Brain MR Image Segmentation [53.70131202548981]
本稿では,脳MRIにKGPL(Knowledge-Guided Prompt Learning)を用いた2段階のセグメンテーションフレームワークを提案する。
具体的には,大規模データセットと準最適ラベルを用いたトレーニング前セグメンテーションモデルについて述べる。
知識的プロンプトの導入は、解剖学的多様性と生物学的プロセスの間の意味的関係を捉えている。
論文 参考訳(メタデータ) (2024-07-31T04:32:43Z) - AutoRG-Brain: Grounded Report Generation for Brain MRI [57.22149878985624]
放射線学者は、大量の画像を日々のベースで解釈し、対応するレポートを生成する責任を負う。
この要求される作業負荷は、人間のエラーのリスクを高め、治療の遅れ、医療費の増加、収益損失、運用上の不効率につながる可能性がある。
地盤自動報告生成(AutoRG)に関する一連の研究を開始した。
このシステムは、脳の構造の明細化、異常の局所化、そしてよく組織化された発見の生成をサポートする。
論文 参考訳(メタデータ) (2024-07-23T17:50:00Z) - A Demographic-Conditioned Variational Autoencoder for fMRI Distribution Sampling and Removal of Confounds [49.34500499203579]
変動型オートエンコーダ(VAE)ベースのモデルであるDemoVAEを作成し、人口統計学から fMRI の特徴を推定する。
ユーザが供給する人口動態に基づいて,高品質な合成fMRIデータを生成する。
論文 参考訳(メタデータ) (2024-05-13T17:49:20Z) - Brain Tumor Segmentation Based on Deep Learning, Attention Mechanisms, and Energy-Based Uncertainty Prediction [0.0]
脳腫瘍は、死亡率80%を超える最も致命的ながんの1つである。
医学的分析では、脳腫瘍の手動アノテーションとセグメンテーションは複雑な作業である。
本稿では,データ前処理中に実装された関心領域検出アルゴリズムを提案する。
ソフトアテンションを持つ完全畳み込みオートエンコーダは、異なる脳MRIをセグメント化する。
論文 参考訳(メタデータ) (2023-12-31T20:42:52Z) - Predicting recovery following stroke: deep learning, multimodal data and
feature selection using explainable AI [3.797471910783104]
主な課題は、ニューロイメージングデータの非常に高次元性と、学習に利用可能なデータセットの比較的小さなサイズである。
我々は、MRIから抽出された関心領域を組み合わせた画像に対して、畳み込みニューラルネットワーク(CNN)を訓練する新しいアプローチを導入する。
病院のスキャナーの画像を用いて、現在のモデルがどのように改善され、さらに高いレベルの精度が得られるかを提案する。
論文 参考訳(メタデータ) (2023-10-29T22:31:20Z) - UniBrain: Universal Brain MRI Diagnosis with Hierarchical
Knowledge-enhanced Pre-training [66.16134293168535]
我々はUniBrainと呼ばれるユニバーサル脳MRI診断のための階層的知識強化事前訓練フレームワークを提案する。
具体的には、UniBrainは、定期的な診断から24,770のイメージレポートペアの大規模なデータセットを活用する。
論文 参考訳(メタデータ) (2023-09-13T09:22:49Z) - BrainFormer: A Hybrid CNN-Transformer Model for Brain fMRI Data
Classification [31.83866719445596]
BrainFormerは、単一のfMRIボリュームを持つ脳疾患分類のための一般的なハイブリッドトランスフォーマーアーキテクチャである。
BrainFormerは、各voxel内のローカルキューを3D畳み込みでモデル化することによって構築される。
我々は、ABIDE、ADNI、MPILMBB、ADHD-200、ECHOを含む5つの独立して取得したデータセット上でBrainFormerを評価する。
論文 参考訳(メタデータ) (2022-08-05T07:54:10Z) - Automated SSIM Regression for Detection and Quantification of Motion
Artefacts in Brain MR Images [54.739076152240024]
磁気共鳴脳画像における運動アーチファクトは重要な問題である。
MR画像の画質評価は,臨床診断に先立って基本的である。
構造類似度指数(SSIM)回帰に基づく自動画像品質評価法が提案されている。
論文 参考訳(メタデータ) (2022-06-14T10:16:54Z) - Modeling Shared Responses in Neuroimaging Studies through MultiView ICA [94.31804763196116]
被験者の大規模なコホートを含むグループ研究は、脳機能組織に関する一般的な結論を引き出す上で重要である。
グループ研究のための新しい多視点独立成分分析モデルを提案し、各被験者のデータを共有独立音源と雑音の線形結合としてモデル化する。
まず、fMRIデータを用いて、被験者間の共通音源の同定における感度の向上を示す。
論文 参考訳(メタデータ) (2020-06-11T17:29:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。