論文の概要: Pathology Image Restoration via Mixture of Prompts
- arxiv url: http://arxiv.org/abs/2503.12399v1
- Date: Sun, 16 Mar 2025 07:58:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-18 12:29:16.717532
- Title: Pathology Image Restoration via Mixture of Prompts
- Title(参考訳): プロンプトの混合による病理像の復元
- Authors: Jiangdong Cai, Yan Chen, Zhenrong Shen, Haotian Jiang, Honglin Xiong, Kai Xuan, Lichi Zhang, Qian Wang,
- Abstract要約: 変圧器と拡散模型をカスケードする2段階修復法を考案する。
提案手法にプロンプト混合物を供給することにより,単焦点平面スキャンから高品質な病理像を復元できることを実証した。
- 参考スコア(独自算出の注目度): 13.250810934343313
- License:
- Abstract: In digital pathology, acquiring all-in-focus images is essential to high-quality imaging and high-efficient clinical workflow. Traditional scanners achieve this by scanning at multiple focal planes of varying depths and then merging them, which is relatively slow and often struggles with complex tissue defocus. Recent prevailing image restoration technique provides a means to restore high-quality pathology images from scans of single focal planes. However, existing image restoration methods are inadequate, due to intricate defocus patterns in pathology images and their domain-specific semantic complexities. In this work, we devise a two-stage restoration solution cascading a transformer and a diffusion model, to benefit from their powers in preserving image fidelity and perceptual quality, respectively. We particularly propose a novel mixture of prompts for the two-stage solution. Given initial prompt that models defocus in microscopic imaging, we design two prompts that describe the high-level image semantics from pathology foundation model and the fine-grained tissue structures via edge extraction. We demonstrate that, by feeding the prompt mixture to our method, we can restore high-quality pathology images from single-focal-plane scans, implying high potentials of the mixture of prompts to clinical usage. Code will be publicly available at https://github.com/caijd2000/MoP.
- Abstract(参考訳): デジタル病理学では、高画質画像と高効率な臨床ワークフローにおいて、オールインフォーカス画像を取得することが不可欠である。
従来のスキャナーは、異なる深さの複数の焦点面をスキャンし、それらをマージすることでこれを達成している。
近年普及している画像復元技術は、単一の焦点面のスキャンから高品質な病理像を復元する手段を提供する。
しかし、病理画像の複雑なデフォーカスパターンとそのドメイン固有の意味的複雑さのため、既存の画像復元手法は不十分である。
本研究では,変換器と拡散モデルにカスケードした2段階の復元解を考案し,画像の忠実さと知覚品質の保存能力の両立を図った。
特に,2段階解に対する新しいプロンプトの混合を提案する。
顕微鏡画像におけるデフォーカスモデルの初期プロンプトを考慮し,病理基盤モデルとエッジ抽出による微細組織構造からの高レベル画像意味論を記述した2つのプロンプトを設計した。
提案手法にプロンプト混合物を供給することにより,単焦点平面スキャンから高品質な病理像を復元できることを示す。
コードはhttps://github.com/caijd2000/MoP.comで公開される。
関連論文リスト
- DiffDoctor: Diagnosing Image Diffusion Models Before Treating [57.82359018425674]
DiffDoctorは2段階のパイプラインで、画像拡散モデルがより少ないアーティファクトを生成するのを支援する。
我々は100万以上の欠陥のある合成画像のデータセットを収集し、効率的なHuman-in-the-loopアノテーションプロセスを構築した。
次に、学習したアーティファクト検出器が第2段階に関与し、ピクセルレベルのフィードバックを提供することで拡散モデルを最適化する。
論文 参考訳(メタデータ) (2025-01-21T18:56:41Z) - Tissue-Contrastive Semi-Masked Autoencoders for Segmentation Pretraining on Chest CT [10.40407976789742]
胸部CT画像のモデリングのための組織コントラストセミマスクオートエンコーダ(TCS-MAE)と呼ばれるMIM法を提案する。
本手法は, 組織型マスキング再構成法により, より微細な解剖学的特徴を捉えるとともに, マスク画像とオリジナル画像との対比学習を施した二重AEアーキテクチャを設計した。
論文 参考訳(メタデータ) (2024-07-12T03:24:17Z) - Coarse-to-Fine Latent Diffusion for Pose-Guided Person Image Synthesis [65.7968515029306]
PGPIS(Pose-Guided Person Image Synthesis)のためのCFLD(Coarse-to-Fine Latent Diffusion)法を提案する。
認識修正デコーダは、学習可能なクエリの集合を段階的に洗練し、粗いプロンプトとして人物画像の意味的理解を抽出するように設計されている。
論文 参考訳(メタデータ) (2024-02-28T06:07:07Z) - Hybrid-Supervised Dual-Search: Leveraging Automatic Learning for
Loss-free Multi-Exposure Image Fusion [60.221404321514086]
マルチ露光画像融合(MEF)は、様々な露光レベルを表すデジタルイメージングの限界に対処するための重要な解決策である。
本稿では、ネットワーク構造と損失関数の両方を自動設計するための二段階最適化探索方式であるHSDS-MEFと呼ばれるMEFのためのハイブリッドスーパービジョンデュアルサーチ手法を提案する。
論文 参考訳(メタデータ) (2023-09-03T08:07:26Z) - Disruptive Autoencoders: Leveraging Low-level features for 3D Medical
Image Pre-training [51.16994853817024]
本研究は、3Dラジオグラフィ画像のための効果的な事前学習フレームワークの設計に焦点をあてる。
ローカルマスキングと低レベルの摂動の組み合わせによって生成された破壊から、オリジナルのイメージを再構築しようとする事前トレーニングフレームワークであるDisruptive Autoencodersを紹介する。
提案する事前トレーニングフレームワークは、複数のダウンストリームタスクでテストされ、最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2023-07-31T17:59:42Z) - DEPAS: De-novo Pathology Semantic Masks using a Generative Model [0.0]
DEPASと呼ばれるスケーラブルな生成モデルを導入し、組織構造をキャプチャし、最先端の品質の高精細なセマンティックマスクを生成する。
我々は,DEPASが皮膚,前立腺,肺の3種類の臓器に対して,組織の現実的な意味マップを生成する能力を示した。
論文 参考訳(メタデータ) (2023-02-13T16:48:33Z) - Sharp-GAN: Sharpness Loss Regularized GAN for Histopathology Image
Synthesis [65.47507533905188]
コンディショナル・ジェネレーショナル・ジェネレーティブ・逆境ネットワークは、合成病理像を生成するために応用されている。
そこで我々は,現実的な病理像を合成するために,シャープネスロス正則化生成対向ネットワークを提案する。
論文 参考訳(メタデータ) (2021-10-27T18:54:25Z) - Blind deblurring for microscopic pathology images using deep learning
networks [0.0]
顕微鏡画像のデフォーカスや動きのぼかしを軽減できるディープラーニングベースのアプローチを実証する。
ぼやけたタイプ、ぼやけた範囲、病理染色を事前に知ることなく、より鮮明できめ細かな画像が得られる。
そこで我々は, 画像のぼかし補正とAIアルゴリズムの診断結果の改善に優れた性能を示した。
論文 参考訳(メタデータ) (2020-11-24T03:52:45Z) - Microscopic fine-grained instance classification through deep attention [7.50282814989294]
限られたサンプルを用いた微視的画像データのきめ細かい分類は、コンピュータビジョンとバイオメディカルイメージングにおいて未解決の問題である。
本稿では,エンドツーエンドで2つのタスクを同時に実行する,シンプルで効果的なディープネットワークを提案する。
その結果、堅牢だが軽量なエンドツーエンドのトレーニング可能なディープネットワークが実現し、最先端の結果が得られます。
論文 参考訳(メタデータ) (2020-10-06T15:29:58Z) - Modeling and Enhancing Low-quality Retinal Fundus Images [167.02325845822276]
低画質の眼底画像は臨床観察における不確実性を高め、誤診のリスクを引き起こす。
本稿では,グローバルな劣化要因を抑えるために,臨床指向の基盤拡張ネットワーク(cofe-Net)を提案する。
合成画像と実画像の両方の実験により、我々のアルゴリズムは網膜の細部を失うことなく、低品質の眼底画像を効果的に補正することを示した。
論文 参考訳(メタデータ) (2020-05-12T08:01:16Z) - FFusionCGAN: An end-to-end fusion method for few-focus images using
conditional GAN in cytopathological digital slides [0.0]
マルチフォーカス画像融合技術は、焦点深度の異なる画像を、ほとんどの物体が焦点を合わせている画像に圧縮する。
本稿では,条件付き生成対向ネットワーク(GAN)に基づく単一焦点画像や少数焦点画像から融合画像を生成する新しい手法を提案する。
ネットワークを生成モデルに統合することにより、生成した融合画像の品質を効果的に向上する。
論文 参考訳(メタデータ) (2020-01-03T02:13:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。