論文の概要: Facilitating Automated Online Consensus Building through Parallel Thinking
- arxiv url: http://arxiv.org/abs/2503.12499v1
- Date: Sun, 16 Mar 2025 13:32:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-18 15:59:05.443901
- Title: Facilitating Automated Online Consensus Building through Parallel Thinking
- Title(参考訳): 並列思考によるオンライン合意構築のファシリテート
- Authors: Wen Gu, Zhaoxing Li, Jan Buermann, Jim Dilkes, Dimitris Michailidis, Shinobu Hasegawa, Vahid Yazdanpanah, Sebastian Stein,
- Abstract要約: 本稿では,オンライン・テキスト・コンセンサス構築プロセスを支援する並列思考型Six Agent(PTFA)を提案する。
PTFAはテキストの投稿を自動的に収集し、大きな言語モデル(LLM)を利用して、確立されたThinking Hatsテクニックの6つの異なる役割すべてを実行する。
パイロット実験を行い、PTFAのアイデア生成、感情探索、思考のより深い分析能力を示した。
- 参考スコア(独自算出の注目度): 7.533839852393623
- License:
- Abstract: Consensus building is inherently challenging due to the diverse opinions held by stakeholders. Effective facilitation is crucial to support the consensus building process and enable efficient group decision making. However, the effectiveness of facilitation is often constrained by human factors such as limited experience and scalability. In this research, we propose a Parallel Thinking-based Facilitation Agent (PTFA) that facilitates online, text-based consensus building processes. The PTFA automatically collects textual posts and leverages large language models (LLMs) to perform all of the six distinct roles of the well-established Six Thinking Hats technique in parallel thinking. To illustrate the potential of PTFA, a pilot study was carried out and PTFA's ability in idea generation, emotional probing, and deeper analysis of ideas was demonstrated. Furthermore, a comprehensive dataset that contains not only the conversational content among the participants but also between the participants and the agent is constructed for future study.
- Abstract(参考訳): 利害関係者の多様な意見のため、コンセンサスビルディングは本質的に困難である。
効果的なファシリテーションは、コンセンサスの構築プロセスをサポートし、効率的なグループ意思決定を可能にするために不可欠である。
しかし、ファシリテーションの有効性は、経験やスケーラビリティの制限といった人間的要因によって制約されることが多い。
本研究では,Parallel Thinking-based Facilitation Agent (PTFA)を提案する。
PTFAはテキストの投稿を自動的に収集し、大きな言語モデル(LLM)を利用して、確立されたSix Thinking Hatsテクニックの6つの異なる役割をすべて並列思考で実行する。
PTFAの可能性を説明するために、PTFAのアイデア生成、感情探索、思考のより深い分析におけるPTFAの能力についてパイロット実験を行った。
さらに、参加者間の会話内容だけでなく、参加者とエージェント間の会話内容を含む包括的データセットを、今後の研究のために構築する。
関連論文リスト
- Iteration of Thought: Leveraging Inner Dialogue for Autonomous Large Language Model Reasoning [0.0]
反復的人間のエンゲージメントは、大規模言語モデル(LLM)の高度な言語処理能力を活用するための一般的かつ効果的な手段である。
思考の反復(IoT)フレームワークを提案する。
静的アプローチや半静的アプローチとは異なり、IoTは進化するコンテキストに基づいて推論パスを動的に適応する。
論文 参考訳(メタデータ) (2024-09-19T09:44:17Z) - "My Grade is Wrong!": A Contestable AI Framework for Interactive Feedback in Evaluating Student Essays [6.810086342993699]
本稿では,対話型フィードバックを自動生成するContestable AI Empowered LLM FrameworkであるCAELFを紹介する。
CAELFは、マルチエージェントシステムと計算的議論を統合することで、学生がフィードバックをクエリし、挑戦し、明確化することができる。
ユーザスタディを用いた500の批判的思考エッセイのケーススタディでは,CAELFが対話的フィードバックを大幅に改善することが示された。
論文 参考訳(メタデータ) (2024-09-11T17:59:01Z) - Constraining Participation: Affordances of Feedback Features in Interfaces to Large Language Models [49.74265453289855]
大規模言語モデル(LLM)は、コンピュータ、Webブラウザ、ブラウザベースのインターフェースによるインターネット接続を持つ人なら誰でも利用できるようになった。
本稿では,ChatGPTインタフェースにおける対話型フィードバック機能の可能性について検討し,ユーザ入力の形状やイテレーションへの参加について分析する。
論文 参考訳(メタデータ) (2024-08-27T13:50:37Z) - TeamLoRA: Boosting Low-Rank Adaptation with Expert Collaboration and Competition [61.91764883512776]
我々は,専門家のためのコラボレーション・コンペティション・モジュールからなる,革新的なPEFT手法であるTeamLoRAを紹介する。
そうすることで、TeamLoRAは専門家を"チーム"として内部のコラボレーションや競争に結び付け、マルチタスク学習のためのより高速で正確なPEFTパラダイムを可能にします。
論文 参考訳(メタデータ) (2024-08-19T09:58:53Z) - Persona Inconstancy in Multi-Agent LLM Collaboration: Conformity, Confabulation, and Impersonation [16.82101507069166]
マルチエージェントAIシステムは、科学的および実践的な応用において、集合的な意思決定をシミュレートするために使用することができる。
我々は、相互協力や議論に携わるAIエージェントのアンサンブルについて、個人の反応やチャットの書き起こしを分析して検討する。
以上の結果から,複数エージェントによる議論が,多面的な視点を反映する集合的AI決定を支援することが示唆された。
論文 参考訳(メタデータ) (2024-05-06T21:20:35Z) - AgentBoard: An Analytical Evaluation Board of Multi-turn LLM Agents [74.16170899755281]
本稿では,LLMエージェントの分析的評価に適したオープンソース評価フレームワークであるAgentBoardを紹介する。
AgentBoardは、インクリメンタルな進歩と包括的な評価ツールキットをキャプチャする、きめ細かい進捗率のメトリクスを提供する。
これはLLMエージェントの能力と限界に光を当てるだけでなく、その性能の解釈可能性も最前線に広める。
論文 参考訳(メタデータ) (2024-01-24T01:51:00Z) - Predicting challenge moments from students' discourse: A comparison of
GPT-4 to two traditional natural language processing approaches [0.3826704341650507]
本研究では,3つの異なる自然言語処理モデルを活用する可能性について検討する。
専門知識ルールベースモデル,教師付き機械学習モデル,言語モデル(LLM)について検討した。
その結果,教師付きMLとLLMのアプローチは両タスクとも良好に動作したことがわかった。
論文 参考訳(メタデータ) (2024-01-03T11:54:30Z) - Igniting Language Intelligence: The Hitchhiker's Guide From
Chain-of-Thought Reasoning to Language Agents [80.5213198675411]
大規模言語モデル(LLM)は言語知能の分野を劇的に拡張した。
LLMは興味をそそるチェーン・オブ・シークレット(CoT)推論技術を活用し、答えを導き出す途中の中間ステップを定式化しなければならない。
最近の研究は、自律言語エージェントの開発を促進するためにCoT推論手法を拡張している。
論文 参考訳(メタデータ) (2023-11-20T14:30:55Z) - Corex: Pushing the Boundaries of Complex Reasoning through Multi-Model Collaboration [83.4031923134958]
Corexは,大規模言語モデルを自律エージェントに変換する,新たな汎用戦略スイートだ。
人間の振る舞いにインスパイアされたCorexは、Debate、Review、Retrieveモードといった多様なコラボレーションパラダイムによって構成されている。
我々は,複数のLDMを協調的に演奏することで,既存の手法に比べて性能が著しく向上することが実証された。
論文 参考訳(メタデータ) (2023-09-30T07:11:39Z) - TPE: Towards Better Compositional Reasoning over Conceptual Tools with
Multi-persona Collaboration [38.63262397010507]
大規模言語モデル(LLM)は、様々な機能ツールの使用を計画する際、例外的な性能を示した。
マルチパーソナライズ・コラボレーション・フレームワークThink-Plan-Execute(TPE)について紹介する。
このフレームワークはレスポンス生成プロセスを、Thinker、Planner、Executorの3つの異なる役割に分離する。
論文 参考訳(メタデータ) (2023-09-28T01:18:53Z) - ChatEval: Towards Better LLM-based Evaluators through Multi-Agent Debate [57.71597869337909]
われわれはChatEvalと呼ばれるマルチエージェントの審判チームを構築し、異なるモデルから生成された応答の品質を自律的に議論し評価する。
分析の結果,ChatEvalは単なるテキストスコアリングを超越し,信頼性評価のための人間模倣評価プロセスを提供することがわかった。
論文 参考訳(メタデータ) (2023-08-14T15:13:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。