Understanding Driver Cognition and Decision-Making Behaviors in High-Risk Scenarios: A Drift Diffusion Perspective
- URL: http://arxiv.org/abs/2503.12637v1
- Date: Sun, 16 Mar 2025 20:11:22 GMT
- Title: Understanding Driver Cognition and Decision-Making Behaviors in High-Risk Scenarios: A Drift Diffusion Perspective
- Authors: Heye Huang, Zheng Li, Hao Cheng, Haoran Wang, Junkai Jiang, Xiaopeng Li, Arkady Zgonnikov,
- Abstract summary: This paper presents a cognition-decision framework that integrates individual variability and commonalities in driver behavior.<n>A cognitive decision-making model based on the drift diffusion model is introduced to capture common decision-making mechanisms in high-risk environments.<n>The proposed model accurately predicts cognitive responses and decision behaviors during emergency maneuvers.
- Score: 20.184300244352286
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Ensuring safe interactions between autonomous vehicles (AVs) and human drivers in mixed traffic systems remains a major challenge, particularly in complex, high-risk scenarios. This paper presents a cognition-decision framework that integrates individual variability and commonalities in driver behavior to quantify risk cognition and model dynamic decision-making. First, a risk sensitivity model based on a multivariate Gaussian distribution is developed to characterize individual differences in risk cognition. Then, a cognitive decision-making model based on the drift diffusion model (DDM) is introduced to capture common decision-making mechanisms in high-risk environments. The DDM dynamically adjusts decision thresholds by integrating initial bias, drift rate, and boundary parameters, adapting to variations in speed, relative distance, and risk sensitivity to reflect diverse driving styles and risk preferences. By simulating high-risk scenarios with lateral, longitudinal, and multidimensional risk sources in a driving simulator, the proposed model accurately predicts cognitive responses and decision behaviors during emergency maneuvers. Specifically, by incorporating driver-specific risk sensitivity, the model enables dynamic adjustments of key DDM parameters, allowing for personalized decision-making representations in diverse scenarios. Comparative analysis with IDM, Gipps, and MOBIL demonstrates that DDM more precisely captures human cognitive processes and adaptive decision-making in high-risk scenarios. These findings provide a theoretical basis for modeling human driving behavior and offer critical insights for enhancing AV-human interaction in real-world traffic environments.
Related papers
- RiskNet: Interaction-Aware Risk Forecasting for Autonomous Driving in Long-Tail Scenarios [6.024186631622774]
RiskNet is an interaction-aware risk forecasting framework for autonomous vehicles.
It integrates deterministic risk modeling with probabilistic behavior prediction for comprehensive risk assessment.
It supports real-time, scenario-adaptive risk forecasting and demonstrates strong generalization across uncertain driving environments.
arXiv Detail & Related papers (2025-04-22T02:36:54Z) - Predicting Driver's Perceived Risk: a Model Based on Semi-Supervised Learning Strategy [7.227510169013427]
Driver's subjective perceived risk (DSPR) model is proposed, regarding perceived risk as a dynamically triggered mechanism with anisotropy and attenuation.
20 participants are recruited for a driver-in-the-loop experiment to report their real-time subjective risk ratings (SRRs) when experiencing various automatic driving scenarios.
DSPR achieves the highest prediction accuracy of 87.91% in predicting SRRs, compared to three state-of-the-art risk models.
arXiv Detail & Related papers (2025-04-17T05:50:33Z) - Minds on the Move: Decoding Trajectory Prediction in Autonomous Driving with Cognitive Insights [18.92479778025183]
In driving scenarios, a vehicle's trajectory is determined by the decision-making process of human drivers.<n>Previous models fail to capture the true intentions of human drivers, leading to suboptimal performance in long-term trajectory prediction.<n>We introduce a Cognitive-Informed Transformer (CITF) that incorporates a cognitive concept, Perceived Safety, to interpret drivers' decision-making mechanisms.
arXiv Detail & Related papers (2025-02-27T13:43:17Z) - SafeDrive: Knowledge- and Data-Driven Risk-Sensitive Decision-Making for Autonomous Vehicles with Large Language Models [14.790308656087316]
SafeDrive is a knowledge- and data-driven risk-sensitive decision-making framework to enhance autonomous driving safety and adaptability.<n>By integrating knowledge-driven insights with adaptive learning mechanisms, the framework ensures robust decision-making under uncertain conditions.
arXiv Detail & Related papers (2024-12-17T16:45:27Z) - Traffic and Safety Rule Compliance of Humans in Diverse Driving Situations [48.924085579865334]
Analyzing human data is crucial for developing autonomous systems that replicate safe driving practices.
This paper presents a comparative evaluation of human compliance with traffic and safety rules across multiple trajectory prediction datasets.
arXiv Detail & Related papers (2024-11-04T09:21:00Z) - Making Large Language Models Better Planners with Reasoning-Decision Alignment [70.5381163219608]
We motivate an end-to-end decision-making model based on multimodality-augmented LLM.
We propose a reasoning-decision alignment constraint between the paired CoTs and planning results.
We dub our proposed large language planners with reasoning-decision alignment as RDA-Driver.
arXiv Detail & Related papers (2024-08-25T16:43:47Z) - Adversarial Safety-Critical Scenario Generation using Naturalistic Human Driving Priors [2.773055342671194]
We introduce a natural adversarial scenario generation solution using naturalistic human driving priors and reinforcement learning techniques.
Our findings demonstrate that the proposed model can generate realistic safety-critical test scenarios covering both naturalness and adversariality.
arXiv Detail & Related papers (2024-08-06T13:58:56Z) - Data-Adaptive Tradeoffs among Multiple Risks in Distribution-Free Prediction [55.77015419028725]
We develop methods that permit valid control of risk when threshold and tradeoff parameters are chosen adaptively.
Our methodology supports monotone and nearly-monotone risks, but otherwise makes no distributional assumptions.
arXiv Detail & Related papers (2024-03-28T17:28:06Z) - RACER: Rational Artificial Intelligence Car-following-model Enhanced by
Reality [51.244807332133696]
This paper introduces RACER, a cutting-edge deep learning car-following model to predict Adaptive Cruise Control (ACC) driving behavior.
Unlike conventional models, RACER effectively integrates Rational Driving Constraints (RDCs), crucial tenets of actual driving.
RACER excels across key metrics, such as acceleration, velocity, and spacing, registering zero violations.
arXiv Detail & Related papers (2023-12-12T06:21:30Z) - Interactive Autonomous Navigation with Internal State Inference and
Interactivity Estimation [58.21683603243387]
We propose three auxiliary tasks with relational-temporal reasoning and integrate them into the standard Deep Learning framework.
These auxiliary tasks provide additional supervision signals to infer the behavior patterns other interactive agents.
Our approach achieves robust and state-of-the-art performance in terms of standard evaluation metrics.
arXiv Detail & Related papers (2023-11-27T18:57:42Z) - Two steps to risk sensitivity [4.974890682815778]
conditional value-at-risk (CVaR) is a risk measure for modeling human and animal planning.
We adopt a conventional distributional approach to CVaR in a sequential setting and reanalyze the choices of human decision-makers.
We then consider a further critical property of risk sensitivity, namely time consistency, showing alternatives to this form of CVaR.
arXiv Detail & Related papers (2021-11-12T16:27:47Z) - Risk-Sensitive Sequential Action Control with Multi-Modal Human
Trajectory Forecasting for Safe Crowd-Robot Interaction [55.569050872780224]
We present an online framework for safe crowd-robot interaction based on risk-sensitive optimal control, wherein the risk is modeled by the entropic risk measure.
Our modular approach decouples the crowd-robot interaction into learning-based prediction and model-based control.
A simulation study and a real-world experiment show that the proposed framework can accomplish safe and efficient navigation while avoiding collisions with more than 50 humans in the scene.
arXiv Detail & Related papers (2020-09-12T02:02:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.