RiskNet: Interaction-Aware Risk Forecasting for Autonomous Driving in Long-Tail Scenarios
- URL: http://arxiv.org/abs/2504.15541v1
- Date: Tue, 22 Apr 2025 02:36:54 GMT
- Title: RiskNet: Interaction-Aware Risk Forecasting for Autonomous Driving in Long-Tail Scenarios
- Authors: Qichao Liu, Heye Huang, Shiyue Zhao, Lei Shi, Soyoung Ahn, Xiaopeng Li,
- Abstract summary: RiskNet is an interaction-aware risk forecasting framework for autonomous vehicles.<n>It integrates deterministic risk modeling with probabilistic behavior prediction for comprehensive risk assessment.<n>It supports real-time, scenario-adaptive risk forecasting and demonstrates strong generalization across uncertain driving environments.
- Score: 6.024186631622774
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Ensuring the safety of autonomous vehicles (AVs) in long-tail scenarios remains a critical challenge, particularly under high uncertainty and complex multi-agent interactions. To address this, we propose RiskNet, an interaction-aware risk forecasting framework, which integrates deterministic risk modeling with probabilistic behavior prediction for comprehensive risk assessment. At its core, RiskNet employs a field-theoretic model that captures interactions among ego vehicle, surrounding agents, and infrastructure via interaction fields and force. This model supports multidimensional risk evaluation across diverse scenarios (highways, intersections, and roundabouts), and shows robustness under high-risk and long-tail settings. To capture the behavioral uncertainty, we incorporate a graph neural network (GNN)-based trajectory prediction module, which learns multi-modal future motion distributions. Coupled with the deterministic risk field, it enables dynamic, probabilistic risk inference across time, enabling proactive safety assessment under uncertainty. Evaluations on the highD, inD, and rounD datasets, spanning lane changes, turns, and complex merges, demonstrate that our method significantly outperforms traditional approaches (e.g., TTC, THW, RSS, NC Field) in terms of accuracy, responsiveness, and directional sensitivity, while maintaining strong generalization across scenarios. This framework supports real-time, scenario-adaptive risk forecasting and demonstrates strong generalization across uncertain driving environments. It offers a unified foundation for safety-critical decision-making in long-tail scenarios.
Related papers
- Understanding Driver Cognition and Decision-Making Behaviors in High-Risk Scenarios: A Drift Diffusion Perspective [20.184300244352286]
This paper presents a cognition-decision framework that integrates individual variability and commonalities in driver behavior.<n>A cognitive decision-making model based on the drift diffusion model is introduced to capture common decision-making mechanisms in high-risk environments.<n>The proposed model accurately predicts cognitive responses and decision behaviors during emergency maneuvers.
arXiv Detail & Related papers (2025-03-16T20:11:22Z) - EARBench: Towards Evaluating Physical Risk Awareness for Task Planning of Foundation Model-based Embodied AI Agents [53.717918131568936]
Embodied artificial intelligence (EAI) integrates advanced AI models into physical entities for real-world interaction.
Foundation models as the "brain" of EAI agents for high-level task planning have shown promising results.
However, the deployment of these agents in physical environments presents significant safety challenges.
This study introduces EARBench, a novel framework for automated physical risk assessment in EAI scenarios.
arXiv Detail & Related papers (2024-08-08T13:19:37Z) - Risk-Aware Vehicle Trajectory Prediction Under Safety-Critical Scenarios [25.16311876790003]
This paper proposes a risk-aware trajectory prediction framework tailored to safety-critical scenarios.
We introduce a safety-critical trajectory prediction dataset and tailored evaluation metrics.
Results demonstrate the superior performance of our model, with a significant improvement in most metrics.
arXiv Detail & Related papers (2024-07-18T13:00:01Z) - SAFE-SIM: Safety-Critical Closed-Loop Traffic Simulation with Diffusion-Controllable Adversaries [94.84458417662407]
We introduce SAFE-SIM, a controllable closed-loop safety-critical simulation framework.
Our approach yields two distinct advantages: 1) generating realistic long-tail safety-critical scenarios that closely reflect real-world conditions, and 2) providing controllable adversarial behavior for more comprehensive and interactive evaluations.
We validate our framework empirically using the nuScenes and nuPlan datasets across multiple planners, demonstrating improvements in both realism and controllability.
arXiv Detail & Related papers (2023-12-31T04:14:43Z) - ASSERT: Automated Safety Scenario Red Teaming for Evaluating the
Robustness of Large Language Models [65.79770974145983]
ASSERT, Automated Safety Scenario Red Teaming, consists of three methods -- semantically aligned augmentation, target bootstrapping, and adversarial knowledge injection.
We partition our prompts into four safety domains for a fine-grained analysis of how the domain affects model performance.
We find statistically significant performance differences of up to 11% in absolute classification accuracy among semantically related scenarios and error rates of up to 19% absolute error in zero-shot adversarial settings.
arXiv Detail & Related papers (2023-10-14T17:10:28Z) - Extreme Risk Mitigation in Reinforcement Learning using Extreme Value
Theory [10.288413564829579]
A critical aspect of risk awareness involves modeling highly rare risk events (rewards) that could potentially lead to catastrophic outcomes.
While risk-aware RL techniques do exist, their level of risk aversion heavily relies on the precision of the state-action value function estimation.
Our work proposes to enhance the resilience of RL agents when faced with very rare and risky events by focusing on refining the predictions of the extreme values predicted by the state-action value function distribution.
arXiv Detail & Related papers (2023-08-24T18:23:59Z) - A Counterfactual Safety Margin Perspective on the Scoring of Autonomous
Vehicles' Riskiness [52.27309191283943]
This paper presents a data-driven framework for assessing the risk of different AVs' behaviors.
We propose the notion of counterfactual safety margin, which represents the minimum deviation from nominal behavior that could cause a collision.
arXiv Detail & Related papers (2023-08-02T09:48:08Z) - Capsa: A Unified Framework for Quantifying Risk in Deep Neural Networks [142.67349734180445]
Existing algorithms that provide risk-awareness to deep neural networks are complex and ad-hoc.
Here we present capsa, a framework for extending models with risk-awareness.
arXiv Detail & Related papers (2023-08-01T02:07:47Z) - Probabilistic Uncertainty-Aware Risk Spot Detector for Naturalistic
Driving [1.8047694351309207]
Risk assessment is a central element for the development and validation of Autonomous Vehicles.
Time Headway (TH) and Time-To-Contact (TTC) are commonly used risk metrics and have qualitative relations to occurrence probability.
We present a probabilistic situation risk model based on survival analysis considerations and extend it to naturally incorporate sensory, temporal and behavioral uncertainties.
arXiv Detail & Related papers (2023-03-13T15:22:51Z) - I Know You Can't See Me: Dynamic Occlusion-Aware Safety Validation of
Strategic Planners for Autonomous Vehicles Using Hypergames [12.244501203346566]
We develop a novel multi-agent dynamic occlusion risk measure for assessing situational risk.
We present a white-box, scenario-based, accelerated safety validation framework for assessing safety of strategic planners in AV.
arXiv Detail & Related papers (2021-09-20T19:38:14Z) - Risk-Sensitive Sequential Action Control with Multi-Modal Human
Trajectory Forecasting for Safe Crowd-Robot Interaction [55.569050872780224]
We present an online framework for safe crowd-robot interaction based on risk-sensitive optimal control, wherein the risk is modeled by the entropic risk measure.
Our modular approach decouples the crowd-robot interaction into learning-based prediction and model-based control.
A simulation study and a real-world experiment show that the proposed framework can accomplish safe and efficient navigation while avoiding collisions with more than 50 humans in the scene.
arXiv Detail & Related papers (2020-09-12T02:02:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.