Pre-screening breast cancer with machine learning and deep learning
- URL: http://arxiv.org/abs/2302.02406v1
- Date: Sun, 5 Feb 2023 15:27:50 GMT
- Title: Pre-screening breast cancer with machine learning and deep learning
- Authors: Rolando Gonzales Martinez, Daan-Max van Dongen
- Abstract summary: Deep learning can be used for pre-screening cancer by analyzing demographic and anthropometric information of patients.
Deep learning model with an input-layer architecture that is fine-tuned using feature selection can effectively distinguish between patients with and without cancer.
These findings suggest that deep learning algorithms applied to cancer pre-screening offer a radiation-free, non-invasive, and affordable complement to screening methods based on imagery.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We suggest that deep learning can be used for pre-screening cancer by
analyzing demographic and anthropometric information of patients, as well as
biological markers obtained from routine blood samples and relative risks
obtained from meta-analysis and international databases. We applied feature
selection algorithms to a database of 116 women, including 52 healthy women and
64 women diagnosed with breast cancer, to identify the best pre-screening
predictors of cancer. We utilized the best predictors to perform k-fold Monte
Carlo cross-validation experiments that compare deep learning against
traditional machine learning algorithms. Our results indicate that a deep
learning model with an input-layer architecture that is fine-tuned using
feature selection can effectively distinguish between patients with and without
cancer. Additionally, compared to machine learning, deep learning has the
lowest uncertainty in its predictions. These findings suggest that deep
learning algorithms applied to cancer pre-screening offer a radiation-free,
non-invasive, and affordable complement to screening methods based on imagery.
The implementation of deep learning algorithms in cancer pre-screening offer
opportunities to identify individuals who may require imaging-based screening,
can encourage self-examination, and decrease the psychological externalities
associated with false positives in cancer screening. The integration of deep
learning algorithms for both screening and pre-screening will ultimately lead
to earlier detection of malignancy, reducing the healthcare and societal burden
associated to cancer treatment.
Related papers
- Deep learning-based identification of patients at increased risk of cancer using routine laboratory markers [2.482109221766753]
Cancer screening involves an initial risk stratification step to determine the screening method and frequency.
For most screening programs, age and clinical risk factors such as family history are part of the initial risk stratification algorithm.
We demonstrate that the combination of simple, widely available blood tests, such as complete blood count and complete metabolic panel, could potentially be used to identify patients at risk for colorectal, liver, and lung cancers.
arXiv Detail & Related papers (2024-10-25T15:50:27Z) - Boosting Medical Image-based Cancer Detection via Text-guided Supervision from Reports [68.39938936308023]
We propose a novel text-guided learning method to achieve highly accurate cancer detection results.
Our approach can leverage clinical knowledge by large-scale pre-trained VLM to enhance generalization ability.
arXiv Detail & Related papers (2024-05-23T07:03:38Z) - Breast Cancer Detection and Diagnosis: A comparative study of
state-of-the-arts deep learning architectures [3.883460584034766]
The survival rates for breast cancer patients in certain third-world countries, like South Africa, are alarmingly low.
Medical specialists and researchers have turned to domain-specific AI approaches, specifically deep learning models, to develop end-to-end solutions.
This research focuses on evaluating the performance of various cutting-edge convolutional neural network (CNN) architectures in comparison to a relatively new model called the Vision Trans-former (ViT)
arXiv Detail & Related papers (2023-05-31T15:21:34Z) - Cancer-Net BCa-S: Breast Cancer Grade Prediction using Volumetric Deep
Radiomic Features from Synthetic Correlated Diffusion Imaging [82.74877848011798]
The prevalence of breast cancer continues to grow, affecting about 300,000 females in the United States in 2023.
The gold-standard Scarff-Bloom-Richardson (SBR) grade has been shown to consistently indicate a patient's response to chemotherapy.
In this paper, we study the efficacy of deep learning for breast cancer grading based on synthetic correlated diffusion (CDI$s$) imaging.
arXiv Detail & Related papers (2023-04-12T15:08:34Z) - Deep learning methods for drug response prediction in cancer:
predominant and emerging trends [50.281853616905416]
Exploiting computational predictive models to study and treat cancer holds great promise in improving drug development and personalized design of treatment plans.
A wave of recent papers demonstrates promising results in predicting cancer response to drug treatments while utilizing deep learning methods.
This review allows to better understand the current state of the field and identify major challenges and promising solution paths.
arXiv Detail & Related papers (2022-11-18T03:26:31Z) - Enhancing Clinical Support for Breast Cancer with Deep Learning Models
using Synthetic Correlated Diffusion Imaging [66.63200823918429]
We investigate enhancing clinical support for breast cancer with deep learning models.
We leverage a volumetric convolutional neural network to learn deep radiomic features from a pre-treatment cohort.
We find that the proposed approach can achieve better performance for both grade and post-treatment response prediction.
arXiv Detail & Related papers (2022-11-10T03:02:12Z) - A Combined PCA-MLP Network for Early Breast Cancer Detection [0.0]
We have studied different machine learning algorithms to detect whether a patient is likely to face breast cancer or not.
Our 4 layers-PCA network has obtained the best accuracy of 100% with a mean of 90.48% on the BCCD dataset.
arXiv Detail & Related papers (2022-06-18T06:17:40Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
We propose an efficient and light-weighted learning architecture to classify and segment breast tumors simultaneously.
We incorporate a segmentation task into a tumor classification network, which makes the backbone network learn representations focused on tumor regions.
The accuracy, sensitivity, and specificity of tumor classification is 88.6%, 94.1%, and 85.3%, respectively.
arXiv Detail & Related papers (2022-01-13T05:24:40Z) - Open-Set Recognition of Breast Cancer Treatments [91.3247063132127]
Open-set recognition generalizes a classification task by classifying test samples as one of the known classes from training or "unknown"
We apply a recent existing Gaussian mixture variational autoencoder model, which achieves state-of-the-art results for image datasets, to breast cancer patient data.
Not only do we obtain more accurate and robust classification results, with a 24.5% average F1 increase compared to a recent method, but we also reexamine open-set recognition in terms of deployability to a clinical setting.
arXiv Detail & Related papers (2022-01-09T04:35:55Z) - Machine Learning Against Cancer: Accurate Diagnosis of Cancer by Machine
Learning Classification of the Whole Genome Sequencing Data [0.0]
We have developed novel methods of MLAC (Machine Learning Against Cancer) achieving perfect results with perfect precision, sensitivity, and specificity.
We have used the whole genome sequencing data acquired by next-generation RNA sequencing techniques in The Cancer Genome Atlas and Genotype-Tissue Expression projects for cancerous and healthy tissues respectively.
arXiv Detail & Related papers (2020-09-12T18:51:47Z) - Divide-and-Rule: Self-Supervised Learning for Survival Analysis in
Colorectal Cancer [9.431791041887957]
We propose a self-supervised learning method that learns a representation of tissue regions as well as a metric of the clustering to obtain their underlying patterns.
We show that the proposed approach can benefit from linear predictors to avoid overfitting in patient outcomes predictions.
arXiv Detail & Related papers (2020-07-07T09:15:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.