論文の概要: REPA: Russian Error Types Annotation for Evaluating Text Generation and Judgment Capabilities
- arxiv url: http://arxiv.org/abs/2503.13102v1
- Date: Mon, 17 Mar 2025 12:15:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-18 15:59:59.840988
- Title: REPA: Russian Error Types Annotation for Evaluating Text Generation and Judgment Capabilities
- Title(参考訳): REPA: テキスト生成と判断能力評価のためのロシアのエラー型アノテーション
- Authors: Alexander Pugachev, Alena Fenogenova, Vladislav Mikhailov, Ekaterina Artemova,
- Abstract要約: 我々は、ロシア語で大言語モデルを審査員として使用する枠組みを評価した。
人選好に基づく3つの評価システムを用いて, エラータイプ別に6つの生成LDMをランク付けする。
以上の結果から,LLM判定におけるロシア語と英語の差が顕著であった。
- 参考スコア(独自算出の注目度): 45.00513157371274
- License:
- Abstract: Recent advances in large language models (LLMs) have introduced the novel paradigm of using LLMs as judges, where an LLM evaluates and scores the outputs of another LLM, which often correlates highly with human preferences. However, the use of LLM-as-a-judge has been primarily studied in English. In this paper, we evaluate this framework in Russian by introducing the Russian Error tyPes Annotation dataset (REPA), a dataset of 1k user queries and 2k LLM-generated responses. Human annotators labeled each response pair expressing their preferences across ten specific error types, as well as selecting an overall preference. We rank six generative LLMs across the error types using three rating systems based on human preferences. We also evaluate responses using eight LLM judges in zero-shot and few-shot settings. We describe the results of analyzing the judges and position and length biases. Our findings reveal a notable gap between LLM judge performance in Russian and English. However, rankings based on human and LLM preferences show partial alignment, suggesting that while current LLM judges struggle with fine-grained evaluation in Russian, there is potential for improvement.
- Abstract(参考訳): 大規模言語モデル(LLM)の最近の進歩は、LLMを審査員として使用する新しいパラダイムを導入し、LLMが別のLLMの出力を評価し、スコア付けする。
しかし、LSM-as-a-judgeの使用は主に英語で研究されている。
本稿では,1kユーザクエリと2k LLM生成応答のデータセットであるロシア語Error tyPes Annotation dataset (REPA)を導入することで,このフレームワークをロシア語で評価する。
ヒューマンアノテータは、各レスポンスペアに10の特定のエラータイプでそれぞれの好みを表現し、全体的な好みを選択するようにラベル付けした。
人選好に基づく3つの評価システムを用いて, エラータイプ別に6つの生成LDMをランク付けする。
また,ゼロショットおよび少数ショット設定において,8つのLDM判定器を用いて応答を評価する。
本稿では, 判断, 位置, 長さの偏りを解析した結果について述べる。
以上の結果から,LLM判定におけるロシア語と英語の差が顕著であった。
しかしながら、人間とLLMの選好に基づくランキングは部分的なアライメントを示しており、現在のLLM審査員はロシア語のきめ細かい評価に苦しむ一方で、改善の可能性が示唆されている。
関連論文リスト
- The Alternative Annotator Test for LLM-as-a-Judge: How to Statistically Justify Replacing Human Annotators with LLMs [21.97227334180969]
LLM-as-a-judge"パラダイムでは、人間が伝統的に行ってきたタスクにおいて、アノテータや評価役としてLarge Language Modelsを採用している。
研究結果や洞察を形成する上での役割にもかかわらず、LLMがヒトのアノテーターを置き換えることができるかどうかを判断するための標準的あるいは厳格な手順は存在しない。
LLMアノテーションの使用を正当化するためには、アノテーション付き例の控えめなサブセットだけを必要とする新しい統計手順である代替アノテーションテスト(alt-test)を提案する。
論文 参考訳(メタデータ) (2025-01-19T07:09:11Z) - From Generation to Judgment: Opportunities and Challenges of LLM-as-a-judge [32.55871325700294]
人工知能(AI)と自然言語処理(NLP)において、長い間、評価と評価が重要な課題であった。
大規模言語モデル(LLM)の最近の進歩は"LLM-as-a-judge"パラダイムを刺激している。
論文 参考訳(メタデータ) (2024-11-25T17:28:44Z) - Evaluating the Evaluator: Measuring LLMs' Adherence to Task Evaluation Instructions [18.93335792080899]
LLMs-as-a-judgeがAI判断と人間の判断の整合性に与える影響について検討する。
我々は、LLMによる最先端評価で一般的に使用される品質基準の分類を集約し、それを審査員として厳密なモデルベンチマークとして提供する。
論文 参考訳(メタデータ) (2024-08-16T14:49:35Z) - DnA-Eval: Enhancing Large Language Model Evaluation through Decomposition and Aggregation [75.81096662788254]
大規模言語モデル(LLM)はスケーラブルで経済的な評価指標である。
これらの評価者がどの程度信頼できるかという問題は、重要な研究課題として浮上している。
本稿では,デコンプリートとアグリゲートを提案し,その評価プロセスを教育実践に基づいて異なる段階に分解する。
論文 参考訳(メタデータ) (2024-05-24T08:12:30Z) - Large Language Models are Inconsistent and Biased Evaluators [2.136983452580014]
我々は,Large Language Models (LLMs) が親しみの偏りを示し,評価の歪んだ分布を示すため,評価値の偏りを示すことを示した。
また, LLM は不整合性評価器であり, テキスト品質の人間の理解に欠かせない相違を誘発する「サンプル間合意」が低く, 感度が高いことがわかった。
論文 参考訳(メタデータ) (2024-05-02T20:42:28Z) - RepEval: Effective Text Evaluation with LLM Representation [55.26340302485898]
RepEvalは、評価のためにLarge Language Models(LLM)表現の投影を利用するメトリクスである。
我々の研究は、LLM表現に埋め込まれたテキスト品質に関する情報の豊かさを強調し、新しいメトリクスの開発のための洞察を提供する。
論文 参考訳(メタデータ) (2024-04-30T13:50:55Z) - METAL: Towards Multilingual Meta-Evaluation [12.852595634767901]
本研究では,多言語シナリオにおいて,Large Language Models (LLMs) を評価対象としてエンド・ツー・エンド評価を行うためのフレームワークを提案する。
要約作業のための母国語話者判定を含む10言語を対象としたデータセットを作成する。
GPT-3.5-Turbo, GPT-4, PaLM2を用いたLCM評価器の性能の比較を行った。
論文 参考訳(メタデータ) (2024-04-02T06:14:54Z) - LLMRefine: Pinpointing and Refining Large Language Models via Fine-Grained Actionable Feedback [65.84061725174269]
最近の大規模言語モデル(LLM)は、世代品質を改善するために人間のフィードバックを活用している。
LLMの出力を最適化する推論時間最適化手法であるLLMRefineを提案する。
機械翻訳、長文質問応答(QA)、話題要約を含む3つのテキスト生成タスクについて実験を行った。
LLMRefineは、すべてのベースラインアプローチを一貫して上回り、翻訳タスクの1.7 MetricXポイント、ASQAの8.1 ROUGE-L、トピックの要約の2.2 ROUGE-Lの改善を実現している。
論文 参考訳(メタデータ) (2023-11-15T19:52:11Z) - Can Large Language Models Be an Alternative to Human Evaluations? [80.81532239566992]
大規模言語モデル(LLM)は、タスク命令のみを提供する場合、目に見えないタスクに対して例外的な性能を示す。
LLM評価の結果は、専門家による評価の結果と一致していることを示す。
論文 参考訳(メタデータ) (2023-05-03T07:28:50Z) - Benchmarking Large Language Models for News Summarization [79.37850439866938]
大規模言語モデル(LLM)は自動要約を約束しているが、その成功の背景にある理由はよく分かっていない。
LLMのゼロショット要約能力の鍵は、モデルサイズではなく、命令チューニングにある。
論文 参考訳(メタデータ) (2023-01-31T18:46:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。