What Robot do I Need? Fast Co-Adaptation of Morphology and Control using
Graph Neural Networks
- URL: http://arxiv.org/abs/2111.02371v1
- Date: Wed, 3 Nov 2021 17:41:38 GMT
- Title: What Robot do I Need? Fast Co-Adaptation of Morphology and Control using
Graph Neural Networks
- Authors: Kevin Sebastian Luck, Roberto Calandra, Michael Mistry
- Abstract summary: A major challenge for the application of co-adaptation methods to the real world is the simulation-to-reality-gap.
This paper presents a new approach combining classic high-frequency deep neural networks with computational expensive Graph Neural Networks for the data-efficient co-adaptation of agents.
- Score: 7.261920381796185
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The co-adaptation of robot morphology and behaviour becomes increasingly
important with the advent of fast 3D-manufacturing methods and efficient deep
reinforcement learning algorithms. A major challenge for the application of
co-adaptation methods to the real world is the simulation-to-reality-gap due to
model and simulation inaccuracies. However, prior work focuses primarily on the
study of evolutionary adaptation of morphologies exploiting analytical models
and (differentiable) simulators with large population sizes, neglecting the
existence of the simulation-to-reality-gap and the cost of manufacturing cycles
in the real world. This paper presents a new approach combining classic
high-frequency deep neural networks with computational expensive Graph Neural
Networks for the data-efficient co-adaptation of agents with varying numbers of
degrees-of-freedom. Evaluations in simulation show that the new method can
co-adapt agents within such a limited number of production cycles by
efficiently combining design optimization with offline reinforcement learning,
that it allows for the direct application to real-world co-adaptation tasks in
future work
Related papers
- A Realistic Simulation Framework for Analog/Digital Neuromorphic Architectures [73.65190161312555]
ARCANA is a spiking neural network simulator designed to account for the properties of mixed-signal neuromorphic circuits.
We show how the results obtained provide a reliable estimate of the behavior of the spiking neural network trained in software.
arXiv Detail & Related papers (2024-09-23T11:16:46Z) - Contrastive Learning in Memristor-based Neuromorphic Systems [55.11642177631929]
Spiking neural networks have become an important family of neuron-based models that sidestep many of the key limitations facing modern-day backpropagation-trained deep networks.
In this work, we design and investigate a proof-of-concept instantiation of contrastive-signal-dependent plasticity (CSDP), a neuromorphic form of forward-forward-based, backpropagation-free learning.
arXiv Detail & Related papers (2024-09-17T04:48:45Z) - Mechanistic Neural Networks for Scientific Machine Learning [58.99592521721158]
We present Mechanistic Neural Networks, a neural network design for machine learning applications in the sciences.
It incorporates a new Mechanistic Block in standard architectures to explicitly learn governing differential equations as representations.
Central to our approach is a novel Relaxed Linear Programming solver (NeuRLP) inspired by a technique that reduces solving linear ODEs to solving linear programs.
arXiv Detail & Related papers (2024-02-20T15:23:24Z) - Self Expanding Convolutional Neural Networks [1.4330085996657045]
We present a novel method for dynamically expanding Convolutional Neural Networks (CNNs) during training.
We employ a strategy where a single model is dynamically expanded, facilitating the extraction of checkpoints at various complexity levels.
arXiv Detail & Related papers (2024-01-11T06:22:40Z) - DiffuseBot: Breeding Soft Robots With Physics-Augmented Generative
Diffusion Models [102.13968267347553]
We present DiffuseBot, a physics-augmented diffusion model that generates soft robot morphologies capable of excelling in a wide spectrum of tasks.
We showcase a range of simulated and fabricated robots along with their capabilities.
arXiv Detail & Related papers (2023-11-28T18:58:48Z) - An Adversarial Active Sampling-based Data Augmentation Framework for
Manufacturable Chip Design [55.62660894625669]
Lithography modeling is a crucial problem in chip design to ensure a chip design mask is manufacturable.
Recent developments in machine learning have provided alternative solutions in replacing the time-consuming lithography simulations with deep neural networks.
We propose a litho-aware data augmentation framework to resolve the dilemma of limited data and improve the machine learning model performance.
arXiv Detail & Related papers (2022-10-27T20:53:39Z) - SpikiLi: A Spiking Simulation of LiDAR based Real-time Object Detection
for Autonomous Driving [0.0]
Spiking Neural Networks are a new neural network design approach that promises tremendous improvements in power efficiency, computation efficiency, and processing latency.
We first illustrate the applicability of spiking neural networks to a complex deep learning task namely Lidar based 3D object detection for automated driving.
arXiv Detail & Related papers (2022-06-06T20:05:17Z) - RLFlow: Optimising Neural Network Subgraph Transformation with World
Models [0.0]
We propose a model-based agent which learns to optimise the architecture of neural networks by performing a sequence of subgraph transformations to reduce model runtime.
We show our approach can match the performance of state of the art on common convolutional networks and outperform those by up to 5% on transformer-style architectures.
arXiv Detail & Related papers (2022-05-03T11:52:54Z) - Deep Bayesian Active Learning for Accelerating Stochastic Simulation [74.58219903138301]
Interactive Neural Process (INP) is a deep active learning framework for simulations and with active learning approaches.
For active learning, we propose a novel acquisition function, Latent Information Gain (LIG), calculated in the latent space of NP based models.
The results demonstrate STNP outperforms the baselines in the learning setting and LIG achieves the state-of-the-art for active learning.
arXiv Detail & Related papers (2021-06-05T01:31:51Z) - Augmenting Differentiable Simulators with Neural Networks to Close the
Sim2Real Gap [15.1962264049463]
We present a differentiable simulation architecture for articulated rigid-body dynamics that enables the augmentation of analytical models with neural networks at any point of the computation.
arXiv Detail & Related papers (2020-07-12T17:27:11Z) - Zero-Shot Reinforcement Learning with Deep Attention Convolutional
Neural Networks [12.282277258055542]
We show that a deep attention convolutional neural network (DACNN) with specific visual sensor configuration performs as well as training on a dataset with high domain and parameter variation at lower computational complexity.
Our new architecture adapts perception with respect to the control objective, resulting in zero-shot learning without pre-training a perception network.
arXiv Detail & Related papers (2020-01-02T19:41:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.