論文の概要: DeGauss: Dynamic-Static Decomposition with Gaussian Splatting for Distractor-free 3D Reconstruction
- arxiv url: http://arxiv.org/abs/2503.13176v1
- Date: Mon, 17 Mar 2025 13:53:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-18 12:30:10.008909
- Title: DeGauss: Dynamic-Static Decomposition with Gaussian Splatting for Distractor-free 3D Reconstruction
- Title(参考訳): DeGauss: ディストラクタフリー3次元再構成のためのガウススプラッティングによる動的静的分解
- Authors: Rui Wang, Quentin Lohmeyer, Mirko Meboldt, Siyu Tang,
- Abstract要約: デガウス(DeGauss)は,非結合型動的静的ガウススプラッティング設計に基づく動的シーン再構築のための自己教師型フレームワークである。
DeGaussは、カジュアルなイメージコレクションから、長くてダイナミックなエゴセントリックなビデオまで、幅広い現実世界のシナリオをしっかりと一般化している。
NeRF-on-the-go, ADT, AEA, Hot3D, EPIC-Fields などのベンチマーク実験では,DeGauss が既存のメソッドを一貫して上回っていることが示されている。
- 参考スコア(独自算出の注目度): 10.683829048617897
- License:
- Abstract: Reconstructing clean, distractor-free 3D scenes from real-world captures remains a significant challenge, particularly in highly dynamic and cluttered settings such as egocentric videos. To tackle this problem, we introduce DeGauss, a simple and robust self-supervised framework for dynamic scene reconstruction based on a decoupled dynamic-static Gaussian Splatting design. DeGauss models dynamic elements with foreground Gaussians and static content with background Gaussians, using a probabilistic mask to coordinate their composition and enable independent yet complementary optimization. DeGauss generalizes robustly across a wide range of real-world scenarios, from casual image collections to long, dynamic egocentric videos, without relying on complex heuristics or extensive supervision. Experiments on benchmarks including NeRF-on-the-go, ADT, AEA, Hot3D, and EPIC-Fields demonstrate that DeGauss consistently outperforms existing methods, establishing a strong baseline for generalizable, distractor-free 3D reconstructionin highly dynamic, interaction-rich environments.
- Abstract(参考訳): 現実世界の撮影から、きれいで邪魔のない3Dシーンを再構築することは、特にエゴセントリックなビデオのような非常にダイナミックで散らかった設定では、依然として大きな課題だ。
この問題を解決するために,デガウス (DeGauss) は動的シーン再構成のためのシンプルで堅牢な自己教師型フレームワークである。
DeGaussはフォアグラウンドガウスアンと背景ガウスアンによる静的な要素の動的要素をモデル化し、確率マスクを用いてそれらの構成を調整し、独立して補完的な最適化を可能にする。
DeGaussは、カジュアルなイメージコレクションから、複雑なヒューリスティックや広範囲の監視に頼ることなく、長いダイナミックなエゴセントリックなビデオまで、幅広い現実世界のシナリオを強力に一般化する。
NeRF-on-the-go, ADT, AEA, Hot3D, EPIC-Fields などのベンチマーク実験では,DeGauss が既存の手法を一貫して上回り,高ダイナミックで対話性に富んだ3D再構成を行うための強力なベースラインを確立した。
関連論文リスト
- GARAD-SLAM: 3D GAussian splatting for Real-time Anti Dynamic SLAM [9.060527946525381]
動的シーンに適したリアルタイム3DGSベースのSLAMシステムであるGARAD-SLAMを提案する。
追跡の面では、ガウスの動的セグメンテーションを直接実行し、それらをフロントエンドにマッピングして動的点ラベルを得る。
実世界のデータセットを用いた結果から,本手法はベースライン手法と比較して,トラッキングに競争力があることが示された。
論文 参考訳(メタデータ) (2025-02-05T14:44:17Z) - Urban4D: Semantic-Guided 4D Gaussian Splatting for Urban Scene Reconstruction [86.4386398262018]
Urban4Dは、深い2Dセマンティックマップ生成の進歩に触発されたセマンティック誘導分解戦略である。
我々のアプローチは、信頼できるセマンティック・ガウシアンを通して潜在的に動的対象を区別する。
実世界のデータセットでの実験では、Urban4Dは従来の最先端の手法と同等または優れた品質を実現している。
論文 参考訳(メタデータ) (2024-12-04T16:59:49Z) - Event-boosted Deformable 3D Gaussians for Fast Dynamic Scene Reconstruction [50.873820265165975]
3D Gaussian Splatting (3D-GS) はリアルタイムレンダリングを実現するが、RGBカメラの低時間分解能のため高速動作に苦慮している。
本稿では,高時間分解能連続運動データをキャプチャするイベントカメラと,高速な動的シーン再構成のための変形可能な3D-GSを組み合わせた最初のアプローチを提案する。
論文 参考訳(メタデータ) (2024-11-25T08:23:38Z) - DeSiRe-GS: 4D Street Gaussians for Static-Dynamic Decomposition and Surface Reconstruction for Urban Driving Scenes [71.61083731844282]
本稿では,自己教師型ガウススプラッティング表現であるDeSiRe-GSについて述べる。
複雑な駆動シナリオにおいて、効率的な静的・動的分解と高忠実な表面再構成を可能にする。
論文 参考訳(メタデータ) (2024-11-18T05:49:16Z) - RoDUS: Robust Decomposition of Static and Dynamic Elements in Urban Scenes [3.1224202646855903]
都市景観における静的および動的要素を分解するパイプラインであるRoDUSについて述べる。
提案手法では、4Dセマンティック情報と組み合わされた堅牢なカーネルベースの初期化を用いて学習プロセスを選択的にガイドする。
特に,KITTI-360およびPandasetデータセットを用いた実験により,挑戦的な都市景観を正確に静的かつ動的成分に分解する手法の有効性が示された。
論文 参考訳(メタデータ) (2024-03-14T14:08:59Z) - DrivingGaussian: Composite Gaussian Splatting for Surrounding Dynamic Autonomous Driving Scenes [57.12439406121721]
我々は動的自律走行シーンを囲む効率的かつ効果的なフレームワークであるDrivingGaussianを提案する。
動くオブジェクトを持つ複雑なシーンでは、まずシーン全体の静的な背景を逐次、段階的にモデル化します。
次に、複合動的ガウスグラフを利用して、複数の移動物体を処理する。
我々はさらに、ガウススプラッティングに先立ってLiDARを使用して、より詳細でシーンを再構築し、パノラマ一貫性を維持する。
論文 参考訳(メタデータ) (2023-12-13T06:30:51Z) - CoGS: Controllable Gaussian Splatting [5.909271640907126]
制御可能なガウススプラッティング(CoGS)は3次元構造のキャプチャと再アニメーションのための新しい手法である。
CoGSは、事前計算された制御信号の必要なく、動的シーンをリアルタイムに制御する。
我々の評価では、CoGSは視覚的忠実度の観点から、既存の動的および制御可能なニューラル表現よりも一貫して優れていた。
論文 参考訳(メタデータ) (2023-12-09T20:06:29Z) - EmerNeRF: Emergent Spatial-Temporal Scene Decomposition via
Self-Supervision [85.17951804790515]
EmerNeRFは動的駆動シーンの時空間表現を学習するためのシンプルだが強力なアプローチである。
シーンの幾何学、外観、動き、セマンティクスを自己ブートストラップで同時にキャプチャする。
本手法はセンサシミュレーションにおける最先端性能を実現する。
論文 参考訳(メタデータ) (2023-11-03T17:59:55Z) - Dynamic 3D Gaussians: Tracking by Persistent Dynamic View Synthesis [58.5779956899918]
動的シーンビュー合成と6自由度(6-DOF)追跡のタスクを同時に処理する手法を提案する。
我々は、シーンを3Dガウスアンのコレクションとしてモデル化する最近の研究に触発された、分析バイシンセサイザーの枠組みに従う。
我々は,1人称視点合成,動的合成シーン合成,4次元映像編集など,我々の表現によって実現された多数のダウンストリームアプリケーションを紹介した。
論文 参考訳(メタデータ) (2023-08-18T17:59:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。