Highly Efficient Direct Analytics on Semantic-aware Time Series Data Compression
- URL: http://arxiv.org/abs/2503.13246v1
- Date: Mon, 17 Mar 2025 14:58:22 GMT
- Title: Highly Efficient Direct Analytics on Semantic-aware Time Series Data Compression
- Authors: Guoyou Sun, Panagiotis Karras, Qi Zhang,
- Abstract summary: We propose a novel method for direct analytics on time series data compressed by the SHRINK compression algorithm.<n>Our approach offers reliable, high-speed outlier detection analytics for diverse IoT applications.
- Score: 15.122371541057339
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Semantic communication has emerged as a promising paradigm to tackle the challenges of massive growing data traffic and sustainable data communication. It shifts the focus from data fidelity to goal-oriented or task-oriented semantic transmission. While deep learning-based methods are commonly used for semantic encoding and decoding, they struggle with the sequential nature of time series data and high computation cost, particularly in resource-constrained IoT environments. Data compression plays a crucial role in reducing transmission and storage costs, yet traditional data compression methods fall short of the demands of goal-oriented communication systems. In this paper, we propose a novel method for direct analytics on time series data compressed by the SHRINK compression algorithm. Through experimentation using outlier detection as a case study, we show that our method outperforms baselines running on uncompressed data in multiple cases, with merely 1% difference in the worst case. Additionally, it achieves four times lower runtime on average and accesses approximately 10% of the data volume, which enables edge analytics with limited storage and computation power. These results demonstrate that our approach offers reliable, high-speed outlier detection analytics for diverse IoT applications while extracting semantics from time-series data, achieving high compression, and reducing data transmission.
Related papers
- Accelerated Methods with Compressed Communications for Distributed Optimization Problems under Data Similarity [55.03958223190181]
We propose the first theoretically grounded accelerated algorithms utilizing unbiased and biased compression under data similarity.<n>Our results are of record and confirmed by experiments on different average losses and datasets.
arXiv Detail & Related papers (2024-12-21T00:40:58Z) - Efficient Compression of Sparse Accelerator Data Using Implicit Neural Representations and Importance Sampling [7.838980097597047]
Large-scale particle colliders in nuclear and high-energy physics generate data at extraordinary rates.<n>We propose a novel approach using implicit neural representations for data learning and compression.<n>We also introduce an importance sampling technique to accelerate the network training process.
arXiv Detail & Related papers (2024-12-02T17:50:49Z) - Towards Resource-Efficient Federated Learning in Industrial IoT for Multivariate Time Series Analysis [50.18156030818883]
Anomaly and missing data constitute a thorny problem in industrial applications.
Deep learning enabled anomaly detection has emerged as a critical direction.
The data collected in edge devices contain user privacy.
arXiv Detail & Related papers (2024-11-06T15:38:31Z) - AutoFlow: An Autoencoder-based Approach for IP Flow Record Compression with Minimal Impact on Traffic Classification [0.0]
This paper presents a novel deep learning-based approach to compressing IP flow records using autoencoders.<n>Our approach reduces data volume while retaining the utility of compressed data for downstream analysis tasks.<n>The implications of this work extend to more efficient network monitoring and scalable, real-time network management solutions.
arXiv Detail & Related papers (2024-09-17T11:24:22Z) - PeFAD: A Parameter-Efficient Federated Framework for Time Series Anomaly Detection [51.20479454379662]
We propose a.
Federated Anomaly Detection framework named PeFAD with the increasing privacy concerns.
We conduct extensive evaluations on four real datasets, where PeFAD outperforms existing state-of-the-art baselines by up to 28.74%.
arXiv Detail & Related papers (2024-06-04T13:51:08Z) - Cross-domain Learning Framework for Tracking Users in RIS-aided Multi-band ISAC Systems with Sparse Labeled Data [55.70071704247794]
Integrated sensing and communications (ISAC) is pivotal for 6G communications and is boosted by the rapid development of reconfigurable intelligent surfaces (RISs)
This paper proposes the X2Track framework, where we model the tracking function by a hierarchical architecture, jointly utilizing multi-modal CSI indicators across multiple bands, and optimize it in a cross-domain manner.
Under X2Track, we design an efficient deep learning algorithm to minimize tracking errors, based on transformer neural networks and adversarial learning techniques.
arXiv Detail & Related papers (2024-05-10T08:04:27Z) - Computationally and Memory-Efficient Robust Predictive Analytics Using Big Data [0.0]
This study navigates through the challenges of data uncertainties, storage limitations, and predictive data-driven modeling using big data.
We utilize Robust Principal Component Analysis (RPCA) for effective noise reduction and outlier elimination, and Optimal Sensor Placement (OSP) for efficient data compression and storage.
arXiv Detail & Related papers (2024-03-27T22:39:08Z) - Enabling robust sensor network design with data processing and
optimization making use of local beehive image and video files [0.0]
We of er a revolutionary paradigm that uses cutting-edge edge computing techniques to optimize data transmission and storage.
Our approach encompasses data compression for images and videos, coupled with a data aggregation technique for numerical data.
A key aspect of our approach is its ability to operate in resource-constrained environments.
arXiv Detail & Related papers (2024-02-26T15:27:47Z) - Dynamic Network-Assisted D2D-Aided Coded Distributed Learning [59.29409589861241]
We propose a novel device-to-device (D2D)-aided coded federated learning method (D2D-CFL) for load balancing across devices.
We derive an optimal compression rate for achieving minimum processing time and establish its connection with the convergence time.
Our proposed method is beneficial for real-time collaborative applications, where the users continuously generate training data.
arXiv Detail & Related papers (2021-11-26T18:44:59Z) - Deep Cellular Recurrent Network for Efficient Analysis of Time-Series
Data with Spatial Information [52.635997570873194]
This work proposes a novel deep cellular recurrent neural network (DCRNN) architecture to process complex multi-dimensional time series data with spatial information.
The proposed architecture achieves state-of-the-art performance while utilizing substantially less trainable parameters when compared to comparable methods in the literature.
arXiv Detail & Related papers (2021-01-12T20:08:18Z) - Straggler-Resilient Federated Learning: Leveraging the Interplay Between
Statistical Accuracy and System Heterogeneity [57.275753974812666]
Federated learning involves learning from data samples distributed across a network of clients while the data remains local.
In this paper, we propose a novel straggler-resilient federated learning method that incorporates statistical characteristics of the clients' data to adaptively select the clients in order to speed up the learning procedure.
arXiv Detail & Related papers (2020-12-28T19:21:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.