SMPR: A structure-enhanced multimodal drug-disease prediction model for drug repositioning and cold start
- URL: http://arxiv.org/abs/2503.13322v1
- Date: Mon, 17 Mar 2025 15:59:20 GMT
- Title: SMPR: A structure-enhanced multimodal drug-disease prediction model for drug repositioning and cold start
- Authors: Xin Dong, Rui Miao, Suyan Zhang, Shuaibing Jia, Leifeng Zhang, Yong Liang, Jianhua Zhang, Yi Zhun Zhu,
- Abstract summary: This paper proposes a structure-enhanced multimodal relationship prediction model (SMRP)<n>SMRP is based on the SMILE structure of the drug, using the Mol2VEC method to generate drug embedded representations.<n>To reduce the difficulty of users' use, SMPR also provides a cold start interface based on structural similarity.
- Score: 9.138126577982314
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Repositioning drug-disease relationships has always been a hot field of research. However, actual cases of biologically validated drug relocation remain very limited, and existing models have not yet fully utilized the structural information of the drug. Furthermore, most repositioning models are only used to complete the relationship matrix, and their practicality is poor when dealing with drug cold start problems. This paper proposes a structure-enhanced multimodal relationship prediction model (SMRP). SMPR is based on the SMILE structure of the drug, using the Mol2VEC method to generate drug embedded representations, and learn disease embedded representations through heterogeneous network graph neural networks. Ultimately, a drug-disease relationship matrix is constructed. In addition, to reduce the difficulty of users' use, SMPR also provides a cold start interface based on structural similarity based on reposition results to simply and quickly predict drug-related diseases. The repositioning ability and cold start capability of the model are verified from multiple perspectives. While the AUC and ACUPR scores of repositioning reach 99% and 61% respectively, the AUC of cold start achieve 80%. In particular, the cold start Recall indicator can reach more than 70%, which means that SMPR is more sensitive to positive samples. Finally, case analysis is used to verify the practical value of the model and visual analysis directly demonstrates the improvement of the structure to the model. For quick use, we also provide local deployment of the model and package it into an executable program.
Related papers
- Addressing Model Overcomplexity in Drug-Drug Interaction Prediction With Molecular Fingerprints [0.0]
Accurately predicting drug-drug interactions (DDIs) is crucial for pharmaceutical research and clinical safety.
Recent deep learning models often suffer from high computational costs and limited generalization across datasets.
In this study, we investigate a simpler yet effective approach using molecular representations such as Morgan fingerprints (S), graph-based embeddings from graph convolutional networks (GCNs), and transformer-derived embeddings from MoLFormer integrated into a straightforward neural network.
arXiv Detail & Related papers (2025-03-30T18:27:01Z) - Chemical knowledge-informed framework for privacy-aware retrosynthesis learning [60.93245342663455]
Current machine learning-based retrosynthesis gathers reaction data from multiple sources into one single edge to train prediction models.<n>This paradigm poses considerable privacy risks as it necessitates broad data availability across organizational boundaries.<n>In the present study, we introduce the chemical knowledge-informed framework (CKIF), a privacy-preserving approach for learning retrosynthesis models.
arXiv Detail & Related papers (2025-02-26T13:13:24Z) - YZS-model: A Predictive Model for Organic Drug Solubility Based on Graph Convolutional Networks and Transformer-Attention [9.018408514318631]
Traditional methods often miss complex molecular structures, leading to inaccuracies.
We introduce the YZS-Model, a deep learning framework integrating Graph Convolutional Networks (GCN), Transformer architectures, and Long Short-Term Memory (LSTM) networks.
YZS-Model achieved an $R2$ of 0.59 and an RMSE of 0.57, outperforming benchmark models.
arXiv Detail & Related papers (2024-06-27T12:40:29Z) - Regressor-free Molecule Generation to Support Drug Response Prediction [83.25894107956735]
Conditional generation based on the target IC50 score can obtain a more effective sampling space.
Regressor-free guidance combines a diffusion model's score estimation with a regression controller model's gradient based on number labels.
arXiv Detail & Related papers (2024-05-23T13:22:17Z) - Optimizing OOD Detection in Molecular Graphs: A Novel Approach with Diffusion Models [71.39421638547164]
We propose to detect OOD molecules by adopting an auxiliary diffusion model-based framework, which compares similarities between input molecules and reconstructed graphs.
Due to the generative bias towards reconstructing ID training samples, the similarity scores of OOD molecules will be much lower to facilitate detection.
Our research pioneers an approach of Prototypical Graph Reconstruction for Molecular OOD Detection, dubbed as PGR-MOOD and hinges on three innovations.
arXiv Detail & Related papers (2024-04-24T03:25:53Z) - A Deep Neural Network -- Mechanistic Hybrid Model to Predict
Pharmacokinetics in Rat [0.0]
In this work we improve the hybrid model developed earlier.
We reduce the median fold change error for the total oral exposure from 2.85 to 2.35 and for intravenous administration from 1.95 to 1.62.
In contrast to a pure machine learning model, our model is able to predict new end points on which it has not been trained.
arXiv Detail & Related papers (2023-10-13T15:01:55Z) - Drug Synergistic Combinations Predictions via Large-Scale Pre-Training
and Graph Structure Learning [82.93806087715507]
Drug combination therapy is a well-established strategy for disease treatment with better effectiveness and less safety degradation.
Deep learning models have emerged as an efficient way to discover synergistic combinations.
Our framework achieves state-of-the-art results in comparison with other deep learning-based methods.
arXiv Detail & Related papers (2023-01-14T15:07:43Z) - KGML-xDTD: A Knowledge Graph-based Machine Learning Framework for Drug
Treatment Prediction and Mechanism Description [11.64859287146094]
We propose KGML-xDTD: a Knowledge Graph-based Machine Learning framework for explainably predicting Drugs Treating Diseases.
We leverage knowledge-and-publication based information to extract biologically meaningful "demonstration paths" as the intermediate guidance in the Graph-based Reinforcement Learning process.
arXiv Detail & Related papers (2022-11-30T17:05:22Z) - Molecular Substructure-Aware Network for Drug-Drug Interaction
Prediction [10.157966744159491]
Concomitant administration of drugs can cause drug-drug interactions (DDIs)
We propose a novel model, Molecular Substructure-Aware Network (MSAN), to effectively predict potential DDIs from molecular structures of drug pairs.
arXiv Detail & Related papers (2022-08-24T02:06:21Z) - Multi-View Substructure Learning for Drug-Drug Interaction Prediction [69.34322811160912]
We propose a novel multi- view drug substructure network for DDI prediction (MSN-DDI)
MSN-DDI learns chemical substructures from both the representations of the single drug (intra-view) and the drug pair (inter-view) simultaneously and utilizes the substructures to update the drug representation iteratively.
Comprehensive evaluations demonstrate that MSN-DDI has almost solved DDI prediction for existing drugs by achieving a relatively improved accuracy of 19.32% and an over 99% accuracy under the transductive setting.
arXiv Detail & Related papers (2022-03-28T05:44:29Z) - SANSformers: Self-Supervised Forecasting in Electronic Health Records
with Attention-Free Models [48.07469930813923]
This work aims to forecast the demand for healthcare services, by predicting the number of patient visits to healthcare facilities.
We introduce SANSformer, an attention-free sequential model designed with specific inductive biases to cater for the unique characteristics of EHR data.
Our results illuminate the promising potential of tailored attention-free models and self-supervised pretraining in refining healthcare utilization predictions across various patient demographics.
arXiv Detail & Related papers (2021-08-31T08:23:56Z) - Relational graph convolutional networks for predicting blood-brain
barrier penetration of drug molecules [12.041672273431994]
The evaluation of the BBB penetrating ability of drug molecules is a critical step in brain drug development.
We employ the relational graph convolutional network (RGCN) to handle the drug-protein relations as well as the features of each individual drug.
The performance was already promising, demonstrating the significant role of the drug-protein/drug relations in the prediction of BBB permeability.
arXiv Detail & Related papers (2021-07-04T15:56:02Z) - Hybrid Attentional Memory Network for Computational drug repositioning [0.0]
The cold start problem has always been a major challenge in the field of computational drug repositioning.
We propose the Hybrid Attentional Memory Network (HAMN) model, a deep architecture combines two classes of CF model in a nonlinear manner.
Our proposed HAMN model is superior to other comparison models according to the AUC, AUPR and HR indicators.
arXiv Detail & Related papers (2020-06-12T02:12:32Z) - Ensemble Transfer Learning for the Prediction of Anti-Cancer Drug
Response [49.86828302591469]
In this paper, we apply transfer learning to the prediction of anti-cancer drug response.
We apply the classic transfer learning framework that trains a prediction model on the source dataset and refines it on the target dataset.
The ensemble transfer learning pipeline is implemented using LightGBM and two deep neural network (DNN) models with different architectures.
arXiv Detail & Related papers (2020-05-13T20:29:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.