論文の概要: Fuzzy Rule-based Differentiable Representation Learning
- arxiv url: http://arxiv.org/abs/2503.13548v1
- Date: Sun, 16 Mar 2025 14:00:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-19 14:17:26.058053
- Title: Fuzzy Rule-based Differentiable Representation Learning
- Title(参考訳): ファジィルールに基づく微分表現学習
- Authors: Wei Zhang, Zhaohong Deng, Guanjin Wang, Kup-Sze Choi,
- Abstract要約: 本稿では,解釈可能なファジィ規則に基づくモデルに基づく表現学習手法を提案する。
入力データを高次元ファジィ特徴空間にマッピングするために,高木・菅野・康ファジィシステム(TSK-FS)上に構築されている。
モデルの解釈可能性と透明性を維持できる結果部分学習のための新しい微分可能最適化法を提案する。
- 参考スコア(独自算出の注目度): 16.706014479049493
- License:
- Abstract: Representation learning has emerged as a crucial focus in machine and deep learning, involving the extraction of meaningful and useful features and patterns from the input data, thereby enhancing the performance of various downstream tasks such as classification, clustering, and prediction. Current mainstream representation learning methods primarily rely on non-linear data mining techniques such as kernel methods and deep neural networks to extract abstract knowledge from complex datasets. However, most of these methods are black-box, lacking transparency and interpretability in the learning process, which constrains their practical utility. To this end, this paper introduces a novel representation learning method grounded in an interpretable fuzzy rule-based model. Specifically, it is built upon the Takagi-Sugeno-Kang fuzzy system (TSK-FS) to initially map input data to a high-dimensional fuzzy feature space through the antecedent part of the TSK-FS. Subsequently, a novel differentiable optimization method is proposed for the consequence part learning which can preserve the model's interpretability and transparency while further exploring the nonlinear relationships within the data. This optimization method retains the essence of traditional optimization, with certain parts of the process parameterized corresponding differentiable modules constructed, and a deep optimization process implemented. Consequently, this method not only enhances the model's performance but also ensures its interpretability. Moreover, a second-order geometry preservation method is introduced to further improve the robustness of the proposed method. Extensive experiments conducted on various benchmark datasets validate the superiority of the proposed method, highlighting its potential for advancing representation learning methodologies.
- Abstract(参考訳): 表現学習は、入力データから有意義で有用な特徴やパターンを抽出し、分類、クラスタリング、予測などの下流タスクの性能を高めることを含む、機械学習とディープラーニングにおける重要な焦点として現れてきた。
現在の主流表現学習法は主に、複雑なデータセットから抽象的な知識を抽出するために、カーネル法やディープニューラルネットワークのような非線形データマイニング技術に依存している。
しかし、これらの手法のほとんどはブラックボックスであり、学習プロセスにおける透明性と解釈可能性に欠けており、実用性に制約がある。
そこで本研究では,解釈可能なファジィ規則に基づくモデルに基づく表現学習手法を提案する。
具体的には、入力データをTSK-FSの先行部分を介して高次元ファジィ特徴空間にマッピングするために、高木・スゲノ・カンファジィシステム(TSK-FS)上に構築されている。
その後,データ内の非線形関係をさらに探求しながら,モデルの解釈性と透明性を保ち得る結果部分学習に対して,新たな微分可能最適化法を提案する。
この最適化手法は従来の最適化の本質を保ち、プロセスの一部がパラメータ化され、対応する微分可能なモジュールが構築され、深い最適化プロセスが実装されている。
したがって、この手法はモデルの性能を高めるだけでなく、解釈可能性も確保する。
さらに,提案手法のロバスト性をさらに向上するため,2次幾何保存法を導入している。
提案手法の優位性を検証し,表現学習手法の進歩の可能性を明らかにする。
関連論文リスト
- Novel Saliency Analysis for the Forward Forward Algorithm [0.0]
ニューラルネットワークトレーニングにフォワードフォワードアルゴリズムを導入する。
この方法は、2つのフォワードパスを実際のデータで実行し、正の強化を促進する。
従来のサリエンシ手法に固有の制約を克服するため,フォワードフォワードフレームワークに特化してベスポークサリエンシアルゴリズムを開発した。
論文 参考訳(メタデータ) (2024-09-18T17:21:59Z) - High-Performance Few-Shot Segmentation with Foundation Models: An Empirical Study [64.06777376676513]
基礎モデルに基づく数ショットセグメンテーション(FSS)フレームワークを開発した。
具体的には、基礎モデルから暗黙的な知識を抽出し、粗い対応を構築するための簡単なアプローチを提案する。
2つの広く使われているデータセットの実験は、我々のアプローチの有効性を実証している。
論文 参考訳(メタデータ) (2024-09-10T08:04:11Z) - MARS: Meta-Learning as Score Matching in the Function Space [79.73213540203389]
本稿では,一連の関連するデータセットから帰納バイアスを抽出する手法を提案する。
機能的ベイズニューラルネットワーク推論を用いて、前者をプロセスとみなし、関数空間で推論を行う。
本手法は,データ生成プロセスのスコア関数をメタラーニングすることにより,複雑な事前知識をシームレスに獲得し,表現することができる。
論文 参考訳(メタデータ) (2022-10-24T15:14:26Z) - Object Representations as Fixed Points: Training Iterative Refinement
Algorithms with Implicit Differentiation [88.14365009076907]
反復的洗練は表現学習に有用なパラダイムである。
トレーニングの安定性とトラクタビリティを向上させる暗黙の差別化アプローチを開発する。
論文 参考訳(メタデータ) (2022-07-02T10:00:35Z) - MACE: An Efficient Model-Agnostic Framework for Counterfactual
Explanation [132.77005365032468]
MACE(Model-Agnostic Counterfactual Explanation)の新たな枠組みを提案する。
MACE法では, 優れた反実例を見つけるための新しいRL法と, 近接性向上のための勾配のない降下法を提案する。
公開データセットの実験は、有効性、空間性、近接性を向上して検証する。
論文 参考訳(メタデータ) (2022-05-31T04:57:06Z) - Model-Based Deep Learning: On the Intersection of Deep Learning and
Optimization [101.32332941117271]
決定アルゴリズムは様々なアプリケーションで使われている。
数理モデルに頼らずにデータから調整された高度パラメトリックアーキテクチャを使用するディープラーニングアプローチが、ますます人気が高まっている。
モデルに基づく最適化とデータ中心のディープラーニングは、しばしば異なる規律とみなされる。
論文 参考訳(メタデータ) (2022-05-05T13:40:08Z) - Unsupervised feature selection via self-paced learning and low-redundant
regularization [6.083524716031565]
自己評価学習とサブスペース学習の枠組みを統合することにより,教師なしの特徴選択を提案する。
この手法の収束性は理論的および実験的に証明される。
実験の結果,提案手法はクラスタリング法の性能を向上し,他の比較アルゴリズムよりも優れていることがわかった。
論文 参考訳(メタデータ) (2021-12-14T08:28:19Z) - Transfer Learning with Gaussian Processes for Bayesian Optimization [9.933956770453438]
トランスファーラーニングのための階層型GPモデルについて統一的なビューを提供し、メソッド間の関係を分析する。
我々は,既存のアプローチと複雑性の両立する新しい閉形式GP転送モデルを開発した。
大規模実験における異なる手法の性能評価を行い、異なる移動学習手法の長所と短所を強調した。
論文 参考訳(メタデータ) (2021-11-22T14:09:45Z) - Inducing Semantic Grouping of Latent Concepts for Explanations: An
Ante-Hoc Approach [18.170504027784183]
我々は,潜伏状態を利用してモデルの異なる部分を適切に修正することにより,より良い説明が得られ,予測性能が向上することを示した。
また,2つの異なる自己スーパービジョン技術を用いて,考察対象の自己スーパービジョンのタイプに関連する意味ある概念を抽出する手法を提案した。
論文 参考訳(メタデータ) (2021-08-25T07:09:57Z) - Deep Unfolding Network for Image Super-Resolution [159.50726840791697]
本稿では,学習に基づく手法とモデルに基づく手法の両方を活用する,エンドツーエンドのトレーニング可能なアンフォールディングネットワークを提案する。
提案するネットワークは, モデルベース手法の柔軟性を継承し, 一つのモデルを用いて, 異なるスケール要因に対する, 曖昧でノイズの多い画像の超解像化を行う。
論文 参考訳(メタデータ) (2020-03-23T17:55:42Z) - Multi-Objective Genetic Programming for Manifold Learning: Balancing
Quality and Dimensionality [4.4181317696554325]
最先端の多様体学習アルゴリズムはこの変換の実行方法において不透明である。
多様体の品質と次元の競合する目的を自動的にバランスさせる多目的アプローチを導入する。
提案手法は,基礎および最先端の多様体学習手法と競合する。
論文 参考訳(メタデータ) (2020-01-05T23:24:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。