論文の概要: Transfer Learning with Gaussian Processes for Bayesian Optimization
- arxiv url: http://arxiv.org/abs/2111.11223v1
- Date: Mon, 22 Nov 2021 14:09:45 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-23 13:27:30.183337
- Title: Transfer Learning with Gaussian Processes for Bayesian Optimization
- Title(参考訳): ベイズ最適化のためのガウス過程を用いた転送学習
- Authors: Petru Tighineanu, Kathrin Skubch, Paul Baireuther, Attila Reiss, Felix
Berkenkamp, Julia Vinogradska
- Abstract要約: トランスファーラーニングのための階層型GPモデルについて統一的なビューを提供し、メソッド間の関係を分析する。
我々は,既存のアプローチと複雑性の両立する新しい閉形式GP転送モデルを開発した。
大規模実験における異なる手法の性能評価を行い、異なる移動学習手法の長所と短所を強調した。
- 参考スコア(独自算出の注目度): 9.933956770453438
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Bayesian optimization is a powerful paradigm to optimize black-box functions
based on scarce and noisy data. Its data efficiency can be further improved by
transfer learning from related tasks. While recent transfer models meta-learn a
prior based on large amount of data, in the low-data regime methods that
exploit the closed-form posterior of Gaussian processes (GPs) have an
advantage. In this setting, several analytically tractable transfer-model
posteriors have been proposed, but the relative advantages of these methods are
not well understood. In this paper, we provide a unified view on hierarchical
GP models for transfer learning, which allows us to analyze the relationship
between methods. As part of the analysis, we develop a novel closed-form
boosted GP transfer model that fits between existing approaches in terms of
complexity. We evaluate the performance of the different approaches in
large-scale experiments and highlight strengths and weaknesses of the different
transfer-learning methods.
- Abstract(参考訳): ベイズ最適化は、少ないデータと騒がしいデータに基づいてブラックボックス関数を最適化する強力なパラダイムである。
そのデータ効率は、関連するタスクから学習を転送することでさらに向上することができる。
近年の転送モデルでは,大量のデータに基づいて先行データをメタ学習する手法が提案されているが,ガウス過程 (GP) の閉形式後部を利用する低データ方式では有利である。
この設定では、いくつかの解析可能なトランスファーモデル後縁が提案されているが、これらの方法の相対的な利点はよく分かっていない。
本稿では,伝達学習のための階層型gpモデルに関する統一的なビューを提供し,手法間の関係を解析できる。
この分析の一環として,既存のアプローチと複雑性の両立する新しい閉形式GP転送モデルを開発した。
大規模実験における異なるアプローチの性能を評価し,異なるトランスファーラーニング手法の強みと弱みを強調する。
関連論文リスト
- A Bayesian Approach to Data Point Selection [24.98069363998565]
データポイントの選択(DPS)は、ディープラーニングにおいて重要なトピックになりつつある。
既存のDPSへのアプローチは、主にバイレベル最適化(BLO)の定式化に基づいている。
DPSに対する新しいベイズ的アプローチを提案する。
論文 参考訳(メタデータ) (2024-11-06T09:04:13Z) - Heterogeneous Multi-Task Gaussian Cox Processes [61.67344039414193]
異種相関タスクを共同でモデル化するためのマルチタスクガウスコックスプロセスの新たな拡張を提案する。
MOGPは、分類、回帰、ポイントプロセスタスクの専用可能性のパラメータに先行して、異種タスク間の情報の共有を容易にする。
モデルパラメータを推定するための閉形式反復更新を実現する平均場近似を導出する。
論文 参考訳(メタデータ) (2023-08-29T15:01:01Z) - Learning Large-scale Neural Fields via Context Pruned Meta-Learning [60.93679437452872]
本稿では,大規模ニューラルネットワーク学習のための最適化に基づくメタラーニング手法を提案する。
メタテスト時間における勾配再スケーリングは、非常に高品質なニューラルネットワークの学習を可能にすることを示す。
我々のフレームワークは、モデルに依存しない、直感的で、実装が容易であり、幅広い信号に対する大幅な再構成改善を示す。
論文 参考訳(メタデータ) (2023-02-01T17:32:16Z) - MACE: An Efficient Model-Agnostic Framework for Counterfactual
Explanation [132.77005365032468]
MACE(Model-Agnostic Counterfactual Explanation)の新たな枠組みを提案する。
MACE法では, 優れた反実例を見つけるための新しいRL法と, 近接性向上のための勾配のない降下法を提案する。
公開データセットの実験は、有効性、空間性、近接性を向上して検証する。
論文 参考訳(メタデータ) (2022-05-31T04:57:06Z) - Invariance Learning in Deep Neural Networks with Differentiable Laplace
Approximations [76.82124752950148]
我々はデータ拡張を選択するための便利な勾配法を開発した。
我々はKronecker-factored Laplace近似を我々の目的とする限界確率に近似する。
論文 参考訳(メタデータ) (2022-02-22T02:51:11Z) - Merging Models with Fisher-Weighted Averaging [24.698591753644077]
我々は、複数のモデルを1つに“マージ”するモデル間で知識を伝達する、根本的に異なる方法を紹介します。
提案手法は,モデルのパラメータの重み付け平均を効果的に計算する。
マージ手順により、これまで探索されていなかった方法でモデルを組み合わせることが可能であることを示す。
論文 参考訳(メタデータ) (2021-11-18T17:59:35Z) - Modular Gaussian Processes for Transfer Learning [0.0]
モジュラー変動ガウス過程(GP)に基づく移動学習のためのフレームワークを提案する。
我々は,データを再考することなく,アンサンブルGPモデルを構築するモジュールベースの手法を開発した。
本手法は、望ましくないデータの集中化を回避し、計算コストの増大を低減し、学習後の不確実性指標の伝達を可能にする。
論文 参考訳(メタデータ) (2021-10-26T09:15:18Z) - Harnessing Heterogeneity: Learning from Decomposed Feedback in Bayesian
Modeling [68.69431580852535]
サブグループフィードバックを取り入れた新しいGPレグレッションを導入する。
我々の修正された回帰は、以前のアプローチと比べて、明らかにばらつきを減らし、したがってより正確な後続を減らした。
我々は2つの異なる社会問題に対してアルゴリズムを実行する。
論文 参考訳(メタデータ) (2021-07-07T03:57:22Z) - Last Layer Marginal Likelihood for Invariance Learning [12.00078928875924]
我々は、より大きな確率関数のクラスに対する推論を行うことができるような、限界確率に対する新しい下界を導入する。
我々は、最後の層にガウス的プロセスを持つアーキテクチャを使用することで、このアプローチをニューラルネットワークに導入することに取り組んでいます。
論文 参考訳(メタデータ) (2021-06-14T15:40:51Z) - Extrapolation for Large-batch Training in Deep Learning [72.61259487233214]
我々は、バリエーションのホストが、我々が提案する統一されたフレームワークでカバー可能であることを示す。
本稿では,この手法の収束性を証明し,ResNet,LSTM,Transformer上での経験的性能を厳格に評価する。
論文 参考訳(メタデータ) (2020-06-10T08:22:41Z) - Sparse Gaussian Processes Revisited: Bayesian Approaches to
Inducing-Variable Approximations [27.43948386608]
変数の誘導に基づく変分推論手法はガウス過程(GP)モデルにおけるスケーラブルな推定のためのエレガントなフレームワークを提供する。
この研究において、変分フレームワークにおけるインプットの最大化は最適な性能をもたらすという共通の知恵に挑戦する。
論文 参考訳(メタデータ) (2020-03-06T08:53:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。