Effective Dimension Aware Fractional-Order Stochastic Gradient Descent for Convex Optimization Problems
- URL: http://arxiv.org/abs/2503.13764v2
- Date: Wed, 07 May 2025 17:59:53 GMT
- Title: Effective Dimension Aware Fractional-Order Stochastic Gradient Descent for Convex Optimization Problems
- Authors: Mohammad Partohaghighi, Roummel Marcia, YangQuan Chen,
- Abstract summary: We propose 2SED Fractional-Order Gradient Descent (2SEDFOSGD) to adapt the fractional exponent in a data-driven manner.<n>Theoretically, this approach preserves the advantages of fractional memory without the sluggish or unstable behavior observed in na"ive fractional SGD.
- Score: 2.5971517743176915
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Fractional-order stochastic gradient descent (FOSGD) leverages fractional exponents to capture long-memory effects in optimization. However, its utility is often limited by the difficulty of tuning and stabilizing these exponents. We propose 2SED Fractional-Order Stochastic Gradient Descent (2SEDFOSGD), which integrates the Two-Scale Effective Dimension (2SED) algorithm with FOSGD to adapt the fractional exponent in a data-driven manner. By tracking model sensitivity and effective dimensionality, 2SEDFOSGD dynamically modulates the exponent to mitigate oscillations and hasten convergence. Theoretically, this approach preserves the advantages of fractional memory without the sluggish or unstable behavior observed in na\"ive fractional SGD. Empirical evaluations in Gaussian and $\alpha$-stable noise scenarios using an autoregressive (AR) model\textcolor{red}{, as well as on the MNIST and CIFAR-100 datasets for image classification,} highlight faster convergence and more robust parameter estimates compared to baseline methods, underscoring the potential of dimension-aware fractional techniques for advanced modeling and estimation tasks.
Related papers
- More Optimal Fractional-Order Stochastic Gradient Descent for Non-Convex Optimization Problems [2.5971517743176915]
We propose 2SED Fractional-Order Gradient Descent (2FOSGD), which integrates the Two-Scale Effective Dimension (2SED) with FOSGD.<n>By tracking sensitivity and effective dimensionality, 2SEDFOSGD dynamically modulates the exponent to mitigate sluggish oscillations and hasten convergence.
arXiv Detail & Related papers (2025-05-05T19:27:36Z) - Enhanced Derivative-Free Optimization Using Adaptive Correlation-Induced Finite Difference Estimators [6.054123928890574]
We develop an algorithm designed to enhance DFO in terms of both gradient estimation efficiency and sample efficiency.<n>We establish the consistency of our proposed algorithm and demonstrate that, despite using a batch of samples per iteration, it achieves the same convergence rate as the KW and SPSA methods.
arXiv Detail & Related papers (2025-02-28T08:05:54Z) - Gradient Normalization Provably Benefits Nonconvex SGD under Heavy-Tailed Noise [60.92029979853314]
We investigate the roles of gradient normalization and clipping in ensuring the convergence of Gradient Descent (SGD) under heavy-tailed noise.
Our work provides the first theoretical evidence demonstrating the benefits of gradient normalization in SGD under heavy-tailed noise.
We introduce an accelerated SGD variant incorporating gradient normalization and clipping, further enhancing convergence rates under heavy-tailed noise.
arXiv Detail & Related papers (2024-10-21T22:40:42Z) - Adaptive Federated Learning Over the Air [108.62635460744109]
We propose a federated version of adaptive gradient methods, particularly AdaGrad and Adam, within the framework of over-the-air model training.
Our analysis shows that the AdaGrad-based training algorithm converges to a stationary point at the rate of $mathcalO( ln(T) / T 1 - frac1alpha ).
arXiv Detail & Related papers (2024-03-11T09:10:37Z) - Implicit Bias and Fast Convergence Rates for Self-attention [26.766649949420746]
We study the fundamental optimization principles of self-attention, the defining mechanism of transformers.
We analyze the implicit bias of gradient-baseds in a self-attention layer with a decoder in a linear classification.
arXiv Detail & Related papers (2024-02-08T15:15:09Z) - Robust Stochastic Optimization via Gradient Quantile Clipping [6.2844649973308835]
We introduce a quant clipping strategy for Gradient Descent (SGD)
We use gradient new outliers as norm clipping chains.
We propose an implementation of the algorithm using Huberiles.
arXiv Detail & Related papers (2023-09-29T15:24:48Z) - Learning Unnormalized Statistical Models via Compositional Optimization [73.30514599338407]
Noise-contrastive estimation(NCE) has been proposed by formulating the objective as the logistic loss of the real data and the artificial noise.
In this paper, we study it a direct approach for optimizing the negative log-likelihood of unnormalized models.
arXiv Detail & Related papers (2023-06-13T01:18:16Z) - SketchySGD: Reliable Stochastic Optimization via Randomized Curvature
Estimates [19.420605210427635]
SketchySGD improves upon existing gradient methods in machine learning by using randomized low-rank approximations to the subsampled Hessian.
We show theoretically that SketchySGD with a fixed stepsize converges linearly to a small ball around the optimum.
In the ill-conditioned setting we show SketchySGD converges at a faster rate than SGD for least-squares problems.
arXiv Detail & Related papers (2022-11-16T01:05:41Z) - NAG-GS: Semi-Implicit, Accelerated and Robust Stochastic Optimizer [45.47667026025716]
We propose a novel, robust and accelerated iteration that relies on two key elements.
The convergence and stability of the obtained method, referred to as NAG-GS, are first studied extensively.
We show that NAG-arity is competitive with state-the-art methods such as momentum SGD with weight decay and AdamW for the training of machine learning models.
arXiv Detail & Related papers (2022-09-29T16:54:53Z) - Efficiency Ordering of Stochastic Gradient Descent [9.634481296779057]
We consider the gradient descent (SGD) algorithm driven by a general sampling sequence, including i.i.i.d noise and random walk on an arbitrary graph.
We employ the notion of efficiency ordering', a well-analyzed tool for comparing the performance of Markov Chain Monte Carlo samplers.
arXiv Detail & Related papers (2022-09-15T16:50:55Z) - Improved Convergence Rate of Stochastic Gradient Langevin Dynamics with
Variance Reduction and its Application to Optimization [50.83356836818667]
gradient Langevin Dynamics is one of the most fundamental algorithms to solve non-eps optimization problems.
In this paper, we show two variants of this kind, namely the Variance Reduced Langevin Dynamics and the Recursive Gradient Langevin Dynamics.
arXiv Detail & Related papers (2022-03-30T11:39:00Z) - On the Double Descent of Random Features Models Trained with SGD [78.0918823643911]
We study properties of random features (RF) regression in high dimensions optimized by gradient descent (SGD)
We derive precise non-asymptotic error bounds of RF regression under both constant and adaptive step-size SGD setting.
We observe the double descent phenomenon both theoretically and empirically.
arXiv Detail & Related papers (2021-10-13T17:47:39Z) - A Two-Time-Scale Stochastic Optimization Framework with Applications in Control and Reinforcement Learning [13.908826484332282]
We study a new two-time-scale gradient method for solving optimization problems.
Our first contribution is to characterize the finite-time complexity of the proposed two-time-scale gradient algorithm.
We apply our framework to gradient-based policy evaluation algorithms in reinforcement learning.
arXiv Detail & Related papers (2021-09-29T23:15:23Z) - Differentiable Annealed Importance Sampling and the Perils of Gradient
Noise [68.44523807580438]
Annealed importance sampling (AIS) and related algorithms are highly effective tools for marginal likelihood estimation.
Differentiability is a desirable property as it would admit the possibility of optimizing marginal likelihood as an objective.
We propose a differentiable algorithm by abandoning Metropolis-Hastings steps, which further unlocks mini-batch computation.
arXiv Detail & Related papers (2021-07-21T17:10:14Z) - Fast Margin Maximization via Dual Acceleration [52.62944011696364]
We present and analyze a momentum-based method for training linear classifiers with an exponentially-tailed loss.
This momentum-based method is derived via the convex dual of the maximum-margin problem, and specifically by applying Nesterov acceleration to this dual.
arXiv Detail & Related papers (2021-07-01T16:36:39Z) - Stochastic Reweighted Gradient Descent [4.355567556995855]
We propose an importance-sampling-based algorithm we call SRG (stochastic reweighted gradient)
We pay particular attention to the time and memory overhead of our proposed method.
We present empirical results to support our findings.
arXiv Detail & Related papers (2021-03-23T04:09:43Z) - Zeroth-Order Hybrid Gradient Descent: Towards A Principled Black-Box
Optimization Framework [100.36569795440889]
This work is on the iteration of zero-th-order (ZO) optimization which does not require first-order information.
We show that with a graceful design in coordinate importance sampling, the proposed ZO optimization method is efficient both in terms of complexity as well as as function query cost.
arXiv Detail & Related papers (2020-12-21T17:29:58Z) - Gaussian MRF Covariance Modeling for Efficient Black-Box Adversarial
Attacks [86.88061841975482]
We study the problem of generating adversarial examples in a black-box setting, where we only have access to a zeroth order oracle.
We use this setting to find fast one-step adversarial attacks, akin to a black-box version of the Fast Gradient Sign Method(FGSM)
We show that the method uses fewer queries and achieves higher attack success rates than the current state of the art.
arXiv Detail & Related papers (2020-10-08T18:36:51Z) - ROOT-SGD: Sharp Nonasymptotics and Near-Optimal Asymptotics in a Single Algorithm [71.13558000599839]
We study the problem of solving strongly convex and smooth unconstrained optimization problems using first-order algorithms.
We devise a novel, referred to as Recursive One-Over-T SGD, based on an easily implementable, averaging of past gradients.
We prove that it simultaneously achieves state-of-the-art performance in both a finite-sample, nonasymptotic sense and an sense.
arXiv Detail & Related papers (2020-08-28T14:46:56Z) - Hessian-Free High-Resolution Nesterov Acceleration for Sampling [55.498092486970364]
Nesterov's Accelerated Gradient (NAG) for optimization has better performance than its continuous time limit (noiseless kinetic Langevin) when a finite step-size is employed.
This work explores the sampling counterpart of this phenonemon and proposes a diffusion process, whose discretizations can yield accelerated gradient-based MCMC methods.
arXiv Detail & Related papers (2020-06-16T15:07:37Z) - Sparse Perturbations for Improved Convergence in Stochastic Zeroth-Order
Optimization [10.907491258280608]
Interest in zeroth-order (SZO) methods has recently been revived in black-box optimization scenarios such as adversarial black-box attacks to deep neural networks.
SZO methods only require the ability to evaluate the objective function at random input points.
We present a SZO optimization method that reduces the dependency on the dimensionality of the random perturbation to be evaluated.
arXiv Detail & Related papers (2020-06-02T16:39:37Z) - On Learning Rates and Schr\"odinger Operators [105.32118775014015]
We present a general theoretical analysis of the effect of the learning rate.
We find that the learning rate tends to zero for a broad non- neural class functions.
arXiv Detail & Related papers (2020-04-15T09:52:37Z) - Momentum Improves Normalized SGD [51.27183254738711]
We show that adding momentum provably removes the need for large batch sizes on objectives.
We show that our method is effective when employed on popular large scale tasks such as ResNet-50 and BERT pretraining.
arXiv Detail & Related papers (2020-02-09T07:00:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.