論文の概要: AI-Powered Prediction of Nanoparticle Pharmacokinetics: A Multi-View Learning Approach
- arxiv url: http://arxiv.org/abs/2503.13798v1
- Date: Tue, 18 Mar 2025 01:09:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-19 14:17:23.472055
- Title: AI-Powered Prediction of Nanoparticle Pharmacokinetics: A Multi-View Learning Approach
- Title(参考訳): ナノ粒子の薬物動態のAIによる予測--多視点学習アプローチ
- Authors: Amirhossein Khakpour, Lucia Florescu, Richard Tilley, Haibo Jiang, K. Swaminathan Iyer, Gustavo Carneiro,
- Abstract要約: 既存のAI駆動アプローチは、AI駆動の予測に依存しているが、NPプロパティについて学ばない。
この研究は、データ効率のよいAI駆動の薬物発見と精密ナノメディシンの基礎を築いた。
- 参考スコア(独自算出の注目度): 5.912585771981805
- License:
- Abstract: The clinical translation of nanoparticle-based treatments remains limited due to the unpredictability of (nanoparticle) NP pharmacokinetics$\unicode{x2014}$how they distribute, accumulate, and clear from the body. Predicting these behaviours is challenging due to complex biological interactions and the difficulty of obtaining high-quality experimental datasets. Existing AI-driven approaches rely heavily on data-driven learning but fail to integrate crucial knowledge about NP properties and biodistribution mechanisms. We introduce a multi-view deep learning framework that enhances pharmacokinetic predictions by incorporating prior knowledge of key NP properties such as size and charge into a cross-attention mechanism, enabling context-aware feature selection and improving generalization despite small datasets. To further enhance prediction robustness, we employ an ensemble learning approach, combining deep learning with XGBoost (XGB) and Random Forest (RF), which significantly outperforms existing AI models. Our interpretability analysis reveals key physicochemical properties driving NP biodistribution, providing biologically meaningful insights into possible mechanisms governing NP behaviour in vivo rather than a black-box model. Furthermore, by bridging machine learning with physiologically based pharmacokinetic (PBPK) modelling, this work lays the foundation for data-efficient AI-driven drug discovery and precision nanomedicine.
- Abstract(参考訳): ナノ粒子をベースとした治療の臨床的翻訳は、(ナノ粒子)NP薬物動態の予測不可能さのために制限されている。
これらの振る舞いを予測することは、複雑な生物学的相互作用と高品質な実験データセットを得るのが困難であるために困難である。
既存のAI駆動アプローチは、データ駆動学習に大きく依存しているが、NP特性や生物分布機構に関する重要な知識を統合できない。
サイズや電荷などの重要なNP特性の事前知識をクロスアテンション機構に組み込んだ多視点深層学習フレームワークを提案する。
XGBoost(XGB)とRandom Forest(RF)を組み合わせることで、既存のAIモデルを大幅に上回っている。
我々の解釈可能性分析は, 生体内NP挙動を制御している重要な物理化学的特性を明らかにし, ブラックボックスモデルではなく, 生体内NP挙動を制御しているメカニズムについて生物学的に有意な洞察を与える。
さらに、生理学的にベースとした薬物動態(PBPK)モデリングによる機械学習のブリッジにより、この研究は、データ効率のよいAI駆動型薬物発見と精密ナノメディシンの基礎を築いた。
関連論文リスト
- Causal Representation Learning from Multimodal Biomedical Observations [57.00712157758845]
バイオメディカルデータセットの理解を容易にするために,マルチモーダルデータに対するフレキシブルな識別条件と原理的手法を開発した。
主要な理論的貢献は、モジュラリティ間の因果関係の構造的空間性である。
実世界のヒト表現型データセットの結果は、確立された生物医学研究と一致している。
論文 参考訳(メタデータ) (2024-11-10T16:40:27Z) - Discovering intrinsic multi-compartment pharmacometric models using Physics Informed Neural Networks [0.0]
我々は、純粋にデータ駆動型ニューラルネットワークモデルであるPKINNを紹介する。
PKINNは、本質的なマルチコンパートメントベースの薬理学構造を効率的に発見し、モデル化する。
得られたモデルは、シンボリック回帰法によって解釈可能であり、説明可能である。
論文 参考訳(メタデータ) (2024-04-30T19:31:31Z) - Physical formula enhanced multi-task learning for pharmacokinetics prediction [54.13787789006417]
AIによる薬物発見の大きな課題は、高品質なデータの不足である。
薬物動態の4つの重要なパラメータを同時に予測するPEMAL法を開発した。
実験の結果,PEMALは一般的なグラフニューラルネットワークに比べてデータ需要を著しく低減することがわかった。
論文 参考訳(メタデータ) (2024-04-16T07:42:55Z) - Learning to Denoise Biomedical Knowledge Graph for Robust Molecular Interaction Prediction [50.7901190642594]
分子間相互作用予測のためのバイオKDN (Biomedical Knowledge Graph Denoising Network) を提案する。
BioKDNは、ノイズの多いリンクを学習可能な方法で識別することで、局所的な部分グラフの信頼性の高い構造を洗練する。
ターゲットの相互作用に関する関係を円滑にすることで、一貫性とロバストなセマンティクスを維持する。
論文 参考訳(メタデータ) (2023-12-09T07:08:00Z) - PIGNet2: A Versatile Deep Learning-based Protein-Ligand Interaction
Prediction Model for Binding Affinity Scoring and Virtual Screening [0.0]
タンパク質-リガンド相互作用の予測(PLI)は、薬物発見において重要な役割を果たす。
結合親和性を正確に評価し、効率的な仮想スクリーニングを行う汎用モデルの開発は依然として課題である。
本稿では、物理インフォームドグラフニューラルネットワークと組み合わせて、新しいデータ拡張戦略を導入することにより、実現可能なソリューションを提案する。
論文 参考訳(メタデータ) (2023-07-03T14:46:49Z) - Hybrid quantum-classical convolutional neural networks to improve
molecular protein binding affinity predictions [0.0]
本稿では,古典的ネットワークの複雑性を20%削減できるハイブリッド量子古典畳み込みニューラルネットワークを提案する。
その結果、トレーニングプロセスにおいて最大40%の大幅な時間節約が達成され、薬物発見プロセスの有意義なスピードアップが実現した。
論文 参考訳(メタデータ) (2023-01-16T09:53:26Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
本稿では,疫病予測のための新しい物理インフォームドニューラルネットワークEINNを紹介する。
メカニスティックモデルによって提供される理論的柔軟性と、AIモデルによって提供されるデータ駆動表現性の両方を活用する方法について検討する。
論文 参考訳(メタデータ) (2022-02-21T18:59:03Z) - Theory-guided hard constraint projection (HCP): a knowledge-based
data-driven scientific machine learning method [7.778724782015986]
本研究は理論誘導型ハード制約射影(hcp)を提案する。
このモデルは、支配方程式のような物理的な制約を、離散化によって容易に扱える形式に変換する。
理論誘導型HCPの性能は不均一な地下流れ問題に基づく実験により検証した。
論文 参考訳(メタデータ) (2020-12-11T06:17:43Z) - Neuro-symbolic Neurodegenerative Disease Modeling as Probabilistic
Programmed Deep Kernels [93.58854458951431]
本稿では、神経変性疾患のパーソナライズされた予測モデリングのための、確率的プログラムによる深層カーネル学習手法を提案する。
我々の分析は、ニューラルネットワークとシンボリック機械学習のアプローチのスペクトルを考慮する。
我々は、アルツハイマー病の予測問題について評価を行い、深層学習を超越した結果を得た。
論文 参考訳(メタデータ) (2020-09-16T15:16:03Z) - Explainable Deep Relational Networks for Predicting Compound-Protein
Affinities and Contacts [80.69440684790925]
Deep Relationsは物理にインスパイアされた、本質的に説明可能なアーキテクチャを持つディープリレーショナルネットワークである。
それは最先端技術に対する優れた解釈可能性を示している。
接触予測 9.5, 16.9, 19.3, 5.7 倍の AUPRC をテスト用、複合ユニク、タンパク質ユニク、両ユニクセットで強化する。
論文 参考訳(メタデータ) (2019-12-29T00:14:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。