論文の概要: Robust3D-CIL: Robust Class-Incremental Learning for 3D Perception
- arxiv url: http://arxiv.org/abs/2503.13869v1
- Date: Tue, 18 Mar 2025 03:36:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-19 14:16:12.009072
- Title: Robust3D-CIL: Robust Class-Incremental Learning for 3D Perception
- Title(参考訳): Robust3D-CIL:3次元知覚のためのロバストクラスインクリメンタルラーニング
- Authors: Jinge Ma, Jiangpeng He, Fengqing Zhu,
- Abstract要約: 3D知覚は、自律運転、ロボット工学、AR/VRといった現実世界の応用において重要な役割を果たす。
クラスインクリメンタルラーニング(CIL)の採用は特に重要である。
本稿では,制限されたリプレイバッファメモリをより効率的に活用するために,ポイントクラウドダウンサンプリングに基づくリプレイ手法を提案する。
提案手法は,リプレイベースのCILベースラインの性能を2%から11%向上させ,実世界の3Dアプリケーションに有望な可能性を証明した。
- 参考スコア(独自算出の注目度): 7.507868991415516
- License:
- Abstract: 3D perception plays a crucial role in real-world applications such as autonomous driving, robotics, and AR/VR. In practical scenarios, 3D perception models must continuously adapt to new data and emerging object categories, but retraining from scratch incurs prohibitive costs. Therefore, adopting class-incremental learning (CIL) becomes particularly essential. However, real-world 3D point cloud data often include corrupted samples, which poses significant challenges for existing CIL methods and leads to more severe forgetting on corrupted data. To address these challenges, we consider the scenario in which a CIL model can be updated using point clouds with unknown corruption to better simulate real-world conditions. Inspired by Farthest Point Sampling, we propose a novel exemplar selection strategy that effectively preserves intra-class diversity when selecting replay exemplars, mitigating forgetting induced by data corruption. Furthermore, we introduce a point cloud downsampling-based replay method to utilize the limited replay buffer memory more efficiently, thereby further enhancing the model's continual learning ability. Extensive experiments demonstrate that our method improves the performance of replay-based CIL baselines by 2% to 11%, proving its effectiveness and promising potential for real-world 3D applications.
- Abstract(参考訳): 3D知覚は、自律運転、ロボット工学、AR/VRといった現実世界の応用において重要な役割を果たす。
現実的なシナリオでは、3D知覚モデルは新しいデータや新しいオブジェクトカテゴリに継続的に適応する必要がありますが、スクラッチから再トレーニングすることは禁忌のコストを発生させます。
そのため、クラス増分学習(CIL)の導入が特に重要である。
しかし、現実世界の3Dポイントクラウドデータには、しばしば破損したサンプルが含まれており、既存のCILメソッドに重大な課題をもたらし、破損したデータをより深く忘れてしまう。
これらの課題に対処するために、未知の汚職を伴う点雲を用いてCILモデルを更新し、現実世界の条件をより良くシミュレートするシナリオを検討する。
本稿では,Farthest Point Smplingに触発されて,データ破損による忘れを軽減し,リプレイ・エクスプローラを選択する際に,クラス内の多様性を効果的に維持する新しい模範選択戦略を提案する。
さらに,制限されたリプレイバッファメモリをより効率的に活用するために,ポイントクラウドダウンサンプリングに基づくリプレイ手法を導入し,モデルの連続学習能力をさらに高めている。
大規模な実験により,リプレイベースのCILベースラインの性能を2%から11%向上させ,実世界の3Dアプリケーションに有望な可能性を証明した。
関連論文リスト
- DM3D: Distortion-Minimized Weight Pruning for Lossless 3D Object Detection [42.07920565812081]
本稿では,3次元物体検出のための新しいトレーニング後の重み付け手法を提案する。
事前訓練されたモデルにおける冗長パラメータを決定し、局所性と信頼性の両方において最小限の歪みをもたらす。
本フレームワークは,ネットワーク出力の歪みを最小限に抑え,検出精度を最大に維持することを目的とする。
論文 参考訳(メタデータ) (2024-07-02T09:33:32Z) - FILP-3D: Enhancing 3D Few-shot Class-incremental Learning with Pre-trained Vision-Language Models [59.13757801286343]
クラス増分学習(class-incremental learning)は、モデルが限られたデータで漸進的にトレーニングされている場合、破滅的な忘れの問題を軽減することを目的としている。
本稿では,特徴空間の不整合のための冗長特徴除去器 (RFE) と,重要な雑音に対する空間ノイズ補償器 (SNC) の2つの新しいコンポーネントを備えたFILP-3Dフレームワークを紹介する。
論文 参考訳(メタデータ) (2023-12-28T14:52:07Z) - Leveraging Neural Radiance Fields for Uncertainty-Aware Visual
Localization [56.95046107046027]
我々は,Neural Radiance Fields (NeRF) を用いてシーン座標回帰のためのトレーニングサンプルを生成することを提案する。
レンダリングにおけるNeRFの効率にもかかわらず、レンダリングされたデータの多くはアーティファクトによって汚染されるか、最小限の情報ゲインしか含まない。
論文 参考訳(メタデータ) (2023-10-10T20:11:13Z) - Robo3D: Towards Robust and Reliable 3D Perception against Corruptions [58.306694836881235]
我々は,3次元検出器とセグメンタのロバスト性を,アウト・オブ・ディストリビューションのシナリオで検証するための,最初の総合的なベンチマークであるRobo3Dを紹介する。
気象条件の悪化,外乱,センサの故障などに起因する8種類の汚職について検討した。
本稿では,モデルレジリエンスを高めるための簡易なフレキシブルなボキセル化戦略とともに,密度に敏感なトレーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-30T17:59:17Z) - Learning-based Point Cloud Registration for 6D Object Pose Estimation in
the Real World [55.7340077183072]
我々は、ポイントクラウドデータからオブジェクトの6Dポーズを推定するタスクに取り組む。
この課題に対処する最近の学習ベースのアプローチは、合成データセットにおいて大きな成功を収めている。
これらの障害の原因を分析し、ソースとターゲットポイントの雲の特徴分布の違いに遡る。
論文 参考訳(メタデータ) (2022-03-29T07:55:04Z) - Spatio-temporal Self-Supervised Representation Learning for 3D Point
Clouds [96.9027094562957]
ラベルのないタスクから学習できる時間的表現学習フレームワークを導入する。
幼児が野生の視覚的データからどのように学ぶかに触発され、3Dデータから派生した豊かな手がかりを探索する。
STRLは3Dポイントクラウドシーケンスから2つの時間的関連フレームを入力として、空間データ拡張で変換し、不変表現を自己指導的に学習する。
論文 参考訳(メタデータ) (2021-09-01T04:17:11Z) - Learning to Drop Points for LiDAR Scan Synthesis [5.132259673802809]
3Dシーンのジェネラティブモデリングは、モバイルロボットが信頼できない観察を改善するための重要なトピックです。
点雲に関する既存の研究のほとんどは、小さく均一な密度のデータに焦点を当てている。
移動ロボットで広く使われている3次元LiDAR点雲は、多数の点と様々な密度のために扱いにくい。
本論文では,リアルなLiDARデータを改良した2次元表現として合成する,ジェネレーティブ・アドバーサリ・ネットワークに基づく新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2021-02-23T21:53:14Z) - Secrets of 3D Implicit Object Shape Reconstruction in the Wild [92.5554695397653]
コンピュータビジョン、ロボティクス、グラフィックスの様々な用途において、高精細な3Dオブジェクトをスパースから再構築することは重要です。
最近の神経暗黙的モデリング法は、合成データセットまたは高密度データセットで有望な結果を示す。
しかし、粗末でノイズの多い実世界のデータではパフォーマンスが悪い。
本論文では, 一般的な神経暗黙モデルの性能低下の根本原因を解析する。
論文 参考訳(メタデータ) (2021-01-18T03:24:48Z) - Point Transformer for Shape Classification and Retrieval of 3D and ALS
Roof PointClouds [3.3744638598036123]
本稿では,リッチポイントクラウド表現の導出を目的とした,完全注意モデルであるem Point Transformerを提案する。
モデルの形状分類と検索性能は,大規模都市データセット - RoofN3D と標準ベンチマークデータセット ModelNet40 で評価される。
提案手法は、RoofN3Dデータセットの他の最先端モデルよりも優れており、ModelNet40ベンチマークで競合する結果を与え、目に見えない点の破損に対して高い堅牢性を示す。
論文 参考訳(メタデータ) (2020-11-08T08:11:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。