COMM:Concentrated Margin Maximization for Robust Document-Level Relation Extraction
- URL: http://arxiv.org/abs/2503.13885v1
- Date: Tue, 18 Mar 2025 04:31:57 GMT
- Title: COMM:Concentrated Margin Maximization for Robust Document-Level Relation Extraction
- Authors: Zhichao Duan, Tengyu Pan, Zhenyu Li, Xiuxing Li, Jianyong Wang,
- Abstract summary: Document-level relation extraction (DocRE) is the process of identifying and extracting relations between entities that span multiple sentences within a document.<n>The complexity inherent in DocRE makes the labeling process prone to errors, compounded by the extreme sparsity of positive relation samples.<n>We have developed a robust framework called textittextbfCOMM to better solve DocRE.
- Score: 5.291403671224172
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Document-level relation extraction (DocRE) is the process of identifying and extracting relations between entities that span multiple sentences within a document. Due to its realistic settings, DocRE has garnered increasing research attention in recent years. Previous research has mostly focused on developing sophisticated encoding models to better capture the intricate patterns between entity pairs. While these advancements are undoubtedly crucial, an even more foundational challenge lies in the data itself. The complexity inherent in DocRE makes the labeling process prone to errors, compounded by the extreme sparsity of positive relation samples, which is driven by both the limited availability of positive instances and the broad diversity of positive relation types. These factors can lead to biased optimization processes, further complicating the task of accurate relation extraction. Recognizing these challenges, we have developed a robust framework called \textit{\textbf{COMM}} to better solve DocRE. \textit{\textbf{COMM}} operates by initially employing an instance-aware reasoning method to dynamically capture pertinent information of entity pairs within the document and extract relational features. Following this, \textit{\textbf{COMM}} takes into account the distribution of relations and the difficulty of samples to dynamically adjust the margins between prediction logits and the decision threshold, a process we call Concentrated Margin Maximization. In this way, \textit{\textbf{COMM}} not only enhances the extraction of relevant relational features but also boosts DocRE performance by addressing the specific challenges posed by the data. Extensive experiments and analysis demonstrate the versatility and effectiveness of \textit{\textbf{COMM}}, especially its robustness when trained on low-quality data (achieves \textgreater 10\% performance gains).
Related papers
- Context-Aware Hierarchical Merging for Long Document Summarization [56.96619074316232]
We propose different approaches to enrich hierarchical merging with context from the source document.<n> Experimental results on datasets representing legal and narrative domains show that contextual augmentation consistently outperforms zero-shot and hierarchical merging baselines.
arXiv Detail & Related papers (2025-02-03T01:14:31Z) - Harnessing Large Language Models for Knowledge Graph Question Answering via Adaptive Multi-Aspect Retrieval-Augmentation [81.18701211912779]
We introduce an Adaptive Multi-Aspect Retrieval-augmented over KGs (Amar) framework.<n>This method retrieves knowledge including entities, relations, and subgraphs, and converts each piece of retrieved text into prompt embeddings.<n>Our method has achieved state-of-the-art performance on two common datasets.
arXiv Detail & Related papers (2024-12-24T16:38:04Z) - Entity or Relation Embeddings? An Analysis of Encoding Strategies for Relation Extraction [19.019881161010474]
Relation extraction is essentially a text classification problem, which can be tackled by fine-tuning a pre-trained language model (LM)
Existing approaches therefore solve the problem in an indirect way: they fine-tune an LM to learn embeddings of the head and tail entities, and then predict the relationship from these entity embeddings.
Our hypothesis in this paper is that relation extraction models can be improved by capturing relationships in a more direct way.
arXiv Detail & Related papers (2023-12-18T09:58:19Z) - AMRFact: Enhancing Summarization Factuality Evaluation with AMR-Driven Negative Samples Generation [57.8363998797433]
We propose AMRFact, a framework that generates perturbed summaries using Abstract Meaning Representations (AMRs)
Our approach parses factually consistent summaries into AMR graphs and injects controlled factual inconsistencies to create negative examples, allowing for coherent factually inconsistent summaries to be generated with high error-type coverage.
arXiv Detail & Related papers (2023-11-16T02:56:29Z) - PromptRE: Weakly-Supervised Document-Level Relation Extraction via
Prompting-Based Data Programming [30.597623178206874]
We propose PromptRE, a novel weakly-supervised document-level relation extraction method.
PromptRE incorporates the label distribution and entity types as prior knowledge to improve the performance.
Experimental results on ReDocRED, a benchmark dataset for document-level relation extraction, demonstrate the superiority of PromptRE over baseline approaches.
arXiv Detail & Related papers (2023-10-13T17:23:17Z) - Document-level Relation Extraction with Relation Correlations [15.997345900917058]
Document-level relation extraction faces two overlooked challenges: long-tail problem and multi-label problem.
We analyze the co-occurrence correlation of relations, and introduce it into DocRE task for the first time.
arXiv Detail & Related papers (2022-12-20T11:17:52Z) - Improving Long Tailed Document-Level Relation Extraction via Easy
Relation Augmentation and Contrastive Learning [66.83982926437547]
We argue that mitigating the long-tailed distribution problem is crucial for DocRE in the real-world scenario.
Motivated by the long-tailed distribution problem, we propose an Easy Relation Augmentation(ERA) method for improving DocRE.
arXiv Detail & Related papers (2022-05-21T06:15:11Z) - Document-Level Relation Extraction with Sentences Importance Estimation
and Focusing [52.069206266557266]
Document-level relation extraction (DocRE) aims to determine the relation between two entities from a document of multiple sentences.
We propose a Sentence Estimation and Focusing (SIEF) framework for DocRE, where we design a sentence importance score and a sentence focusing loss.
Experimental results on two domains show that our SIEF not only improves overall performance, but also makes DocRE models more robust.
arXiv Detail & Related papers (2022-04-27T03:20:07Z) - Augmenting Document Representations for Dense Retrieval with
Interpolation and Perturbation [49.940525611640346]
Document Augmentation for dense Retrieval (DAR) framework augments the representations of documents with their Dense Augmentation and perturbations.
We validate the performance of DAR on retrieval tasks with two benchmark datasets, showing that the proposed DAR significantly outperforms relevant baselines on the dense retrieval of both the labeled and unlabeled documents.
arXiv Detail & Related papers (2022-03-15T09:07:38Z) - SAIS: Supervising and Augmenting Intermediate Steps for Document-Level
Relation Extraction [51.27558374091491]
We propose to explicitly teach the model to capture relevant contexts and entity types by supervising and augmenting intermediate steps (SAIS) for relation extraction.
Based on a broad spectrum of carefully designed tasks, our proposed SAIS method not only extracts relations of better quality due to more effective supervision, but also retrieves the corresponding supporting evidence more accurately.
arXiv Detail & Related papers (2021-09-24T17:37:35Z) - Reasoning with Latent Structure Refinement for Document-Level Relation
Extraction [20.308845516900426]
We propose a novel model that empowers the relational reasoning across sentences by automatically inducing the latent document-level graph.
Specifically, our model achieves an F1 score of 59.05 on a large-scale document-level dataset (DocRED)
arXiv Detail & Related papers (2020-05-13T13:36:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.