論文の概要: Quantum LDPC codes for erasure-biased atomic quantum processors
- arxiv url: http://arxiv.org/abs/2502.20189v1
- Date: Thu, 27 Feb 2025 15:23:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-28 14:56:58.323044
- Title: Quantum LDPC codes for erasure-biased atomic quantum processors
- Title(参考訳): 消去バイアス原子量子プロセッサのための量子LDPC符号
- Authors: Laura Pecorari, Guido Pupillo,
- Abstract要約: 量子低密度パリティ・チェック(LDPC)符号は、最近、フォールトトレラント量子コンピューティングへの道筋を示すことが示されている。
支配的エラーが消去である場合、量子LDPC符号は高いしきい値とより強力な論理的誤り抑制を与える。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Identifying the best families of quantum error correction (QEC) codes for near-term experiments is key to enabling fault-tolerant quantum computing. Ideally, such codes should have low overhead in qubit number, high physical error thresholds, and moderate requirements on qubit connectivity to simplify experiments, while allowing for high logical error suppression. Quantum Low-Density Parity-Check (LDPC) codes have been recently shown to provide a path towards QEC with low qubit overhead and small logical error probabilities. Here, we demonstrate that when the dominant errors are erasures -- as can be engineered in different quantum computing architectures -- quantum LDPC codes additionally provide high thresholds and even stronger logical error suppression in parameter regimes that are accessible to current experiments. Using large-scale circuit-level QEC simulations, we benchmark the performance of two families of high-rate quantum LDPC codes, namely Clifford-deformed La-cross codes and Bivariate Bicycle codes, under a noise model strongly biased towards erasure errors. Both codes outperform the surface code by offering up to orders of magnitude lower logical error probabilities. Interestingly, we find that this decrease in the logical error probability may not be accompanied by an increase in the code threshold, as different QEC codes benefit differently from large erasure fractions. While here we focus on neutral atom qubits, the results also hold for other quantum platforms, such as trapped ions and superconducting qubits, for which erasure conversion has been demonstrated.
- Abstract(参考訳): フォールトトレラント量子コンピューティングを実現する上では、量子エラー訂正(QEC)符号の最良のファミリーを短期的な実験で特定することが重要である。
理想的には、そのような符号は、量子ビット数のオーバーヘッドが低く、物理誤差閾値が高く、実験を単純化するためには、量子ビット接続の適度な要求を満たさなければならない。
量子低密度パリティ・チェック(LDPC)符号は、最近、量子ビットオーバーヘッドが低く、論理誤差の少ないQECへの経路を示すことが示されている。
ここでは、支配的なエラーが、異なる量子コンピューティングアーキテクチャでエンジニアリングできるように、消去である場合、量子LDPC符号は、さらに高いしきい値を提供し、現在の実験でアクセス可能なパラメータレギュレーションにおいてより強力な論理的エラー抑制を提供する。
大規模回路レベルQECシミュレーションを用いて,高次量子LDPC符号,すなわちクリフォード変形Laクロス符号とバイバリエート自転車符号の2つのファミリの性能を,消去誤差に強く偏りのあるノイズモデルでベンチマークした。
どちらの符号も、論理的エラー確率を桁違いに低くすることで、表面コードより優れている。
興味深いことに、この論理誤差確率の減少はコードしきい値の増加に伴わない可能性がある。
ここでは中性原子量子ビットに焦点をあてるが、この結果は閉じ込められたイオンや超伝導量子ビットなどの他の量子プラットフォームにも当てはまり、消去変換が実証されている。
関連論文リスト
- Quantum subspace verification for error correction codes [13.856955493134908]
本稿では,量子誤り訂正符号部分空間の知識を活用し,潜在的な測定予算を削減する量子部分空間検証の枠組みを紹介する。
有名なCalderbank-Shor-Steane符号やQLDPC安定化符号のような特定の符号の場合、設定数とサンプルの複雑さは著しく減少する。
提案した部分空間検証と直接忠実度推定を組み合わせることで、一般的なマジック論理状態の忠実度を検証するためのプロトコルを構築する。
論文 参考訳(メタデータ) (2024-10-16T13:28:33Z) - Transversal CNOT gate with multi-cycle error correction [1.7359033750147501]
スケーラブルでプログラム可能な量子コンピュータは、コンピュータが合理的な時間枠で達成できない計算集約的なタスクを解く可能性を持ち、量子優位性を達成する。
現在の量子プロセッサのエラーに対する脆弱性は、実用的な問題に必要な複雑で深い量子回路の実行に重大な課題をもたらす。
我々の研究は、現在の世代の量子ハードウェアを用いた超伝導体ベースのプロセッサにおいて、論理的CNOTゲートとエラー検出を併用できる可能性を確立した。
論文 参考訳(メタデータ) (2024-06-18T04:50:15Z) - High-rate quantum LDPC codes for long-range-connected neutral atom registers [0.0]
量子ビット数と制御複雑性の緩やかなオーバーヘッドを持つ高速量子誤り訂正(QEC)符号は、フォールトトレラント量子コンピューティングには望ましい。
我々は,低密度パリティ・チェック(LDPC)符号群を長距離の相互作用に限定した解析を行い,中性原子レジスタの短期実装について概説する。
論文 参考訳(メタデータ) (2024-04-19T17:14:03Z) - Deep Quantum Error Correction [73.54643419792453]
量子誤り訂正符号(QECC)は、量子コンピューティングのポテンシャルを実現するための鍵となる要素である。
本研究では,新しいエンペンド・ツー・エンドの量子誤りデコーダを効率的に訓練する。
提案手法は,最先端の精度を実現することにより,QECCのニューラルデコーダのパワーを実証する。
論文 参考訳(メタデータ) (2023-01-27T08:16:26Z) - Neural Belief Propagation Decoding of Quantum LDPC Codes Using
Overcomplete Check Matrices [60.02503434201552]
元のチェック行列における行の線形結合から生成された冗長な行を持つチェック行列に基づいてQLDPC符号を復号する。
このアプローチは、非常に低い復号遅延の利点を付加して、復号性能を著しく向上させる。
論文 参考訳(メタデータ) (2022-12-20T13:41:27Z) - Erasure conversion for fault-tolerant quantum computing in alkaline
earth Rydberg atom arrays [3.575043595126111]
本稿では,物理誤差を消去に変換する171ドルYb中性原子量子ビットに対して,量子ビット符号化とゲートプロトコルを提案する。
エラーの98%を消去に変換できると見積もっている。
論文 参考訳(メタデータ) (2022-01-10T18:56:31Z) - Hardware-Efficient, Fault-Tolerant Quantum Computation with Rydberg
Atoms [55.41644538483948]
我々は中性原子量子コンピュータにおいてエラー源の完全な特徴付けを行う。
計算部分空間外の状態への原子量子ビットの崩壊に伴う最も重要なエラーに対処する,新しい,明らかに効率的な手法を開発した。
我々のプロトコルは、アルカリ原子とアルカリ原子の両方にエンコードされた量子ビットを持つ最先端の中性原子プラットフォームを用いて、近い将来に実装できる。
論文 参考訳(メタデータ) (2021-05-27T23:29:53Z) - Exponential suppression of bit or phase flip errors with repetitive
error correction [56.362599585843085]
最先端の量子プラットフォームは通常、物理的エラーレートが10~3ドル近くである。
量子誤り訂正(QEC)は、多くの物理量子ビットに量子論理情報を分散することで、この分割を橋渡しすることを約束する。
超伝導量子ビットの2次元格子に埋め込まれた1次元繰り返し符号を実装し、ビットまたは位相フリップ誤差の指数的抑制を示す。
論文 参考訳(メタデータ) (2021-02-11T17:11:20Z) - Crosstalk Suppression for Fault-tolerant Quantum Error Correction with
Trapped Ions [62.997667081978825]
本稿では、電波トラップで閉じ込められた1本のイオン列をベースとした量子計算アーキテクチャにおけるクロストーク誤差の研究を行い、個別に調整されたレーザービームで操作する。
この種の誤差は、理想的には、異なるアクティブな量子ビットのセットで処理される単一量子ゲートと2量子ビットの量子ゲートが適用されている間は、未修正のままであるオブザーバー量子ビットに影響を及ぼす。
我々は,第1原理からクロストーク誤りを微視的にモデル化し,コヒーレント対非コヒーレントなエラーモデリングの重要性を示す詳細な研究を行い,ゲートレベルでクロストークを積極的に抑制するための戦略について議論する。
論文 参考訳(メタデータ) (2020-12-21T14:20:40Z) - Optical demonstration of quantum fault-tolerant threshold [2.6098148548199047]
実用的な量子計算における大きな課題は、量子システムと環境との相互作用によって引き起こされる不可解な誤りである。
論理量子ビットをいくつかの物理量子ビットで符号化したフォールトトレラントスキームは、誤りの存在下で論理量子ビットの正しい出力を可能にする。
本稿では,特殊耐故障プロトコルにおけるしきい値の存在を実験的に実証する。
論文 参考訳(メタデータ) (2020-12-16T13:23:29Z) - Fault-tolerant Coding for Quantum Communication [71.206200318454]
ノイズチャネルの多くの用途でメッセージを確実に送信するために、回路をエンコードしてデコードする。
すべての量子チャネル$T$とすべての$eps>0$に対して、以下に示すゲートエラー確率のしきい値$p(epsilon,T)$が存在し、$C-epsilon$より大きいレートはフォールトトレラント的に達成可能である。
我々の結果は、遠方の量子コンピュータが高レベルのノイズの下で通信する必要があるような、大きな距離での通信やオンチップでの通信に関係している。
論文 参考訳(メタデータ) (2020-09-15T15:10:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。