論文の概要: COLSON: Controllable Learning-Based Social Navigation via Diffusion-Based Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2503.13934v1
- Date: Tue, 18 Mar 2025 06:02:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-19 14:14:58.065096
- Title: COLSON: Controllable Learning-Based Social Navigation via Diffusion-Based Reinforcement Learning
- Title(参考訳): COLSON:拡散型強化学習による制御可能な学習型ソーシャルナビゲーション
- Authors: Yuki Tomita, Kohei Matsumoto, Yuki Hyodo, Ryo Kurazume,
- Abstract要約: 歩行者交通を伴う動的環境における移動ロボットナビゲーションは、自律型モバイルサービスロボットの開発において重要な課題である。
深い強化学習に基づく手法は、最適化能力によって従来のルールベースのアプローチよりも優れています。
本研究では,拡散に基づく強化学習手法をソーシャルナビゲーションに適用し,その有効性を検証した。
- 参考スコア(独自算出の注目度): 0.7499722271664144
- License:
- Abstract: Mobile robot navigation in dynamic environments with pedestrian traffic is a key challenge in the development of autonomous mobile service robots. Recently, deep reinforcement learning-based methods have been actively studied and have outperformed traditional rule-based approaches owing to their optimization capabilities. Among these, methods that assume a continuous action space typically rely on a Gaussian distribution assumption, which limits the flexibility of generated actions. Meanwhile, the application of diffusion models to reinforcement learning has advanced, allowing for more flexible action distributions compared with Gaussian distribution-based approaches. In this study, we applied a diffusion-based reinforcement learning approach to social navigation and validated its effectiveness. Furthermore, by leveraging the characteristics of diffusion models, we propose an extension that enables post-training action smoothing and adaptation to static obstacle scenarios not considered during the training steps.
- Abstract(参考訳): 歩行者交通を伴う動的環境における移動ロボットナビゲーションは、自律型モバイルサービスロボットの開発において重要な課題である。
近年,深い強化学習に基づく手法が盛んに研究され,その最適化能力により従来のルールベースの手法よりも優れている。
これらのうち、連続的な作用空間を仮定するメソッドは通常ガウス分布の仮定に依存し、これは生成された作用の柔軟性を制限する。
一方、拡散モデルの強化学習への応用は進歩しており、ガウス分布に基づくアプローチと比較してより柔軟な行動分布が可能である。
本研究では,拡散に基づく強化学習手法をソーシャルナビゲーションに適用し,その有効性を検証した。
さらに,拡散モデルの特徴を活用して,訓練段階において考慮されない静的障害物シナリオへの学習後の動作の平滑化と適応を可能にする拡張を提案する。
関連論文リスト
- Diffusion Predictive Control with Constraints [51.91057765703533]
制約付き拡散予測制御(DPCC)
トレーニングデータから逸脱可能な、明示的な状態と行動制約を持つ拡散制御アルゴリズム。
DPCCは,学習した制御タスクの性能を維持しつつ,新しいテスト時間制約を満たす上で,既存の手法よりも優れるロボットマニピュレータのシミュレーションを通して示す。
論文 参考訳(メタデータ) (2024-12-12T15:10:22Z) - Towards Human-Like Driving: Active Inference in Autonomous Vehicle Control [0.5437298646956507]
本稿では,アクティブ推論の適用を通じて,自律走行車(AV)制御への新たなアプローチを提案する。
アクティブ推論(英: Active Inference)は、脳を予測機械として概念化する神経科学に由来する理論である。
提案手法は,深層学習と能動推論を統合してAVの側方制御を制御し,シミュレーション都市環境下で車線追従操作を行う。
論文 参考訳(メタデータ) (2024-07-10T14:08:27Z) - Diffusion-Reinforcement Learning Hierarchical Motion Planning in Adversarial Multi-agent Games [6.532258098619471]
部分的に観察可能なマルチエージェント追従ゲーム(PEG)における回避目標の動作計画タスクに焦点をあてる。
これらの追尾回避問題は、捜索・救助活動や監視ロボットなど、様々な応用に関係している。
環境データに応答するグローバルパスを計画するために,高レベル拡散モデルを統合する階層型アーキテクチャを提案する。
論文 参考訳(メタデータ) (2024-03-16T03:53:55Z) - Multi-Agent Dynamic Relational Reasoning for Social Robot Navigation [50.01551945190676]
社会ロボットナビゲーションは、日常生活の様々な状況において有用であるが、安全な人間とロボットの相互作用と効率的な軌道計画が必要である。
本稿では, 動的に進化する関係構造を明示的に推論した系統的関係推論手法を提案する。
マルチエージェント軌道予測とソーシャルロボットナビゲーションの有効性を実証する。
論文 参考訳(メタデータ) (2024-01-22T18:58:22Z) - Unsupervised Discovery of Interpretable Directions in h-space of
Pre-trained Diffusion Models [63.1637853118899]
本稿では,事前学習した拡散モデルのh空間における解釈可能な方向を特定するための,教師なしおよび学習に基づく最初の手法を提案する。
我々は、事前訓練された拡散モデルのh-スペースで動作するシフト制御モジュールを用いて、サンプルをシフトしたバージョンに操作する。
それらを共同で最適化することで、モデルは自然に絡み合った、解釈可能な方向を発見する。
論文 参考訳(メタデータ) (2023-10-15T18:44:30Z) - Score Regularized Policy Optimization through Diffusion Behavior [25.926641622408752]
オフライン強化学習の最近の進歩は拡散モデリングの潜在可能性を明らかにしている。
本稿では,批判モデルと事前学習した拡散行動モデルから,効率的な決定論的推論ポリシーを抽出することを提案する。
本手法は,移動作業における各種拡散法と比較して,動作サンプリング速度を25倍以上に向上させる。
論文 参考訳(メタデータ) (2023-10-11T08:31:26Z) - Distributionally Robust Model-based Reinforcement Learning with Large
State Spaces [55.14361269378122]
強化学習における3つの大きな課題は、大きな状態空間を持つ複雑な力学系、コストのかかるデータ取得プロセス、トレーニング環境の展開から現実の力学を逸脱させることである。
広範に用いられているKullback-Leibler, chi-square, および全変分不確実性集合の下で, 連続状態空間を持つ分布ロバストなマルコフ決定過程について検討した。
本稿では,ガウス過程と最大分散削減アルゴリズムを用いて,多出力名目遷移力学を効率的に学習するモデルベースアプローチを提案する。
論文 参考訳(メタデータ) (2023-09-05T13:42:11Z) - Crossway Diffusion: Improving Diffusion-based Visuomotor Policy via
Self-supervised Learning [42.009856923352864]
拡散モデルは、シーケンス・モデリング方式で行動的クローニングに採用されている。
拡散に基づくビジュモータポリシー学習の簡易かつ効果的な手法であるクロスウェイ拡散を提案する。
シミュレーションおよび実世界のロボット作業におけるクロスウェイ拡散の有効性を実証した。
論文 参考訳(メタデータ) (2023-07-04T17:59:29Z) - Learning Representative Trajectories of Dynamical Systems via
Domain-Adaptive Imitation [0.0]
ドメイン適応軌道模倣のための深層強化学習エージェントDATIを提案する。
実験の結果,DATIは模擬学習と最適制御のベースライン手法よりも優れていることがわかった。
実世界のシナリオへの一般化は、海上交通における異常な動きパターンの発見を通じて示される。
論文 参考訳(メタデータ) (2023-04-19T15:53:48Z) - Safe Multi-agent Learning via Trapping Regions [89.24858306636816]
我々は、動的システムの定性理論から知られているトラップ領域の概念を適用し、分散学習のための共同戦略空間に安全セットを作成する。
本稿では,既知の学習力学を持つシステムにおいて,候補がトラップ領域を形成することを検証するための二分分割アルゴリズムと,学習力学が未知のシナリオに対するサンプリングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-02-27T14:47:52Z) - Generative Adversarial Reward Learning for Generalized Behavior Tendency
Inference [71.11416263370823]
ユーザの行動嗜好モデルのための生成的逆強化学習を提案する。
我々のモデルは,差別的アクター批判ネットワークとWasserstein GANに基づいて,ユーザの行動から報酬を自動的に学習することができる。
論文 参考訳(メタデータ) (2021-05-03T13:14:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。