論文の概要: Enhanced High-Dimensional Data Visualization through Adaptive Multi-Scale Manifold Embedding
- arxiv url: http://arxiv.org/abs/2503.13954v1
- Date: Tue, 18 Mar 2025 06:46:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-19 14:15:11.534842
- Title: Enhanced High-Dimensional Data Visualization through Adaptive Multi-Scale Manifold Embedding
- Title(参考訳): 適応型マルチスケールマニフォールド埋め込みによる高次元データの可視化
- Authors: Tianhao Ni, Bingjie Li, Zhigang Yao,
- Abstract要約: 本稿では,適応型マルチスケールマニフォールド埋め込み (AMSME) アルゴリズムを提案する。
順序距離を導入することで、高次元空間における次元性の呪いの制約を克服できることが示される。
実験により,AMSMEはクラスタ内トポロジ構造を著しく保存し,クラスタ間分離を改善した。
- 参考スコア(独自算出の注目度): 0.7705234721762716
- License:
- Abstract: To address the dual challenges of the curse of dimensionality and the difficulty in separating intra-cluster and inter-cluster structures in high-dimensional manifold embedding, we proposes an Adaptive Multi-Scale Manifold Embedding (AMSME) algorithm. By introducing ordinal distance to replace traditional Euclidean distances, we theoretically demonstrate that ordinal distance overcomes the constraints of the curse of dimensionality in high-dimensional spaces, effectively distinguishing heterogeneous samples. We design an adaptive neighborhood adjustment method to construct similarity graphs that simultaneously balance intra-cluster compactness and inter-cluster separability. Furthermore, we develop a two-stage embedding framework: the first stage achieves preliminary cluster separation while preserving connectivity between structurally similar clusters via the similarity graph, and the second stage enhances inter-cluster separation through a label-driven distance reweighting. Experimental results demonstrate that AMSME significantly preserves intra-cluster topological structures and improves inter-cluster separation on real-world datasets. Additionally, leveraging its multi-resolution analysis capability, AMSME discovers novel neuronal subtypes in the mouse lumbar dorsal root ganglion scRNA-seq dataset, with marker gene analysis revealing their distinct biological roles.
- Abstract(参考訳): 次元の呪いと高次元多様体埋め込みにおけるクラスタ内構造とクラスタ間構造を分離することの難しさに対処するために,適応型マルチスケールマニフォールド埋め込み (AMSME) アルゴリズムを提案する。
従来のユークリッド距離を置き換えるために順序距離を導入することによって、高次元空間における次元の呪いの制約を克服し、不均一なサンプルを効果的に区別する。
クラスタ内コンパクト性とクラスタ間分離性を同時にバランスする類似性グラフを構築するための適応的な近傍調整法を設計する。
さらに,2段階の組込みフレームワークを開発する。第1段階は類似性グラフを介して構造的に類似したクラスタ間の接続を維持しつつ,予備クラスタ分離を実現し,第2段階はラベル駆動距離再重み付けによるクラスタ間分離を強化する。
実験により,AMSMEはクラスタ内トポロジ構造を著しく保存し,クラスタ間分離を改善した。
さらに、マルチレゾリューション解析機能を利用して、AMSMEはマウス腰椎後根神経節scRNA-seqデータセットに新しい神経サブタイプを発見し、マーカー遺伝子解析によりそれぞれの生物学的役割を明らかにしている。
関連論文リスト
- Weakly Supervised Segmentation of Hyper-Reflective Foci with Compact Convolutional Transformers and SAM2 [0.7340017786387767]
本稿では,従来の注意に基づくMIL(Multiple Instance Learning)アプローチの空間分解能を高める新しいフレームワークを提案する。
我々は,MILをCCT(Compact Convolutional Transformer)に置き換えることによって,セグメント化精度が大幅に向上することが実証された。
論文 参考訳(メタデータ) (2025-01-10T12:56:18Z) - Self-Supervised Graph Embedding Clustering [70.36328717683297]
K-means 1-step dimensionality reduction clustering method は,クラスタリングタスクにおける次元性の呪いに対処する上で,いくつかの進歩をもたらした。
本稿では,K-meansに多様体学習を統合する統一フレームワークを提案する。
論文 参考訳(メタデータ) (2024-09-24T08:59:51Z) - Distributional Reduction: Unifying Dimensionality Reduction and Clustering with Gromov-Wasserstein [56.62376364594194]
教師なし学習は、潜在的に大きな高次元データセットの基盤構造を捉えることを目的としている。
本研究では、最適輸送のレンズの下でこれらのアプローチを再検討し、Gromov-Wasserstein問題と関係を示す。
これにより、分散還元と呼ばれる新しい一般的なフレームワークが公開され、DRとクラスタリングを特別なケースとして回復し、単一の最適化問題内でそれらに共同で対処することができる。
論文 参考訳(メタデータ) (2024-02-03T19:00:19Z) - Efficient Bilateral Cross-Modality Cluster Matching for Unsupervised Visible-Infrared Person ReID [56.573905143954015]
本稿では, クラスタ間マッチングによるモダリティギャップを低減するための, クラスタマッチングに基づく新たな学習フレームワークを提案する。
このような監視信号の下では、クラスタレベルで特徴を協調的に整列させるために、モダリティ・特定・モダリティ・非依存(MSMA)コントラスト学習フレームワークが提案されている。
公開SYSU-MM01とRegDBデータセットの実験により,提案手法の有効性が示された。
論文 参考訳(メタデータ) (2023-05-22T03:27:46Z) - Subspace-Contrastive Multi-View Clustering [0.0]
本稿では,SCMC(Subspace-Contrastive Multi-View Clustering)アプローチを提案する。
ビュー固有のオートエンコーダを用いて、元のマルチビューデータを非線形構造を知覚するコンパクトな特徴にマッピングする。
提案モデルの有効性を実証するために,8つの課題データセットに対して比較実験を多数実施する。
論文 参考訳(メタデータ) (2022-10-13T07:19:37Z) - Mixed Graph Contrastive Network for Semi-Supervised Node Classification [63.924129159538076]
我々はMixed Graph Contrastive Network(MGCN)と呼ばれる新しいグラフコントラスト学習手法を提案する。
本研究では,非摂動増強戦略と相関還元機構により,潜伏埋め込みの識別能力を向上する。
これら2つの設定を組み合わせることで、識別表現学習のために、豊富なノードと稀に価値あるラベル付きノードの両方から、豊富な監視情報を抽出する。
論文 参考訳(メタデータ) (2022-06-06T14:26:34Z) - Improved Dual Correlation Reduction Network [40.792587861237166]
改良二重相関低減ネットワーク(IDCRN)と呼ばれる新しいディープグラフクラスタリングアルゴリズムを提案する。
クロスビュー特徴相関行列をアイデンティティ行列に近似することにより、特徴の異なる次元間の冗長性を低減できる。
また,グラフ畳み込みネットワーク(GCN)における過度にスムースな問題による表現の崩壊を,伝播正規化項によって回避する。
論文 参考訳(メタデータ) (2022-02-25T07:48:32Z) - Semi-supervised Domain Adaptive Structure Learning [72.01544419893628]
半教師付きドメイン適応 (SSDA) は,1) アノテーションの低いデータに過度に適合する手法と,2) ドメイン間の分散シフトの両方を克服しなければならない課題である。
SSLとDAの協調を正規化するための適応型構造学習手法を提案する。
論文 参考訳(メタデータ) (2021-12-12T06:11:16Z) - Neural Distance Embeddings for Biological Sequences [43.07977514121458]
幾何ベクトル空間に配列を埋め込むためのフレームワークであるNeuroSEEDを提案する。
階層構造を捉えた双曲空間の有効性を示し, RMSEの埋め込みにおける平均22%の還元効果を示す。
提案手法は,実世界のデータセットに対して,大幅な精度向上と実行時改善を示す。
論文 参考訳(メタデータ) (2021-09-20T17:30:58Z) - LSD-C: Linearly Separable Deep Clusters [145.89790963544314]
ラベルなしデータセットのクラスタを識別する新しい手法であるLSD-Cを提案する。
本手法は,最近の半教師付き学習の実践からインスピレーションを得て,クラスタリングアルゴリズムと自己教師付き事前学習と強力なデータ拡張を組み合わせることを提案する。
CIFAR 10/100, STL 10, MNIST, および文書分類データセットReuters 10Kなど, 一般的な公開画像ベンチマークにおいて, 当社のアプローチが競合より大幅に優れていたことを示す。
論文 参考訳(メタデータ) (2020-06-17T17:58:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。