BI-RADS prediction of mammographic masses using uncertainty information extracted from a Bayesian Deep Learning model
- URL: http://arxiv.org/abs/2503.13999v2
- Date: Mon, 24 Mar 2025 12:24:58 GMT
- Title: BI-RADS prediction of mammographic masses using uncertainty information extracted from a Bayesian Deep Learning model
- Authors: Mohaddeseh Chegini, Ali Mahloojifar,
- Abstract summary: The uncertainty information extracted by a Bayesian deep learning model is utilized to predict the BI_RADS score.<n>The model can distinguish malignant from benign samples with an accuracy of 75.86% and correctly identify all malignant samples as BI_RADS 5.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The BI_RADS score is a probabilistic reporting tool used by radiologists to express the level of uncertainty in predicting breast cancer based on some morphological features in mammography images. There is a significant variability in describing masses which sometimes leads to BI_RADS misclassification. Using a BI_RADS prediction system is required to support the final radiologist decisions. In this study, the uncertainty information extracted by a Bayesian deep learning model is utilized to predict the BI_RADS score. The investigation results based on the pathology information demonstrate that the f1-scores of the predictions of the radiologist are 42.86%, 48.33% and 48.28%, meanwhile, the f1-scores of the model performance are 73.33%, 59.60% and 59.26% in the BI_RADS 2, 3 and 5 dataset samples, respectively. Also, the model can distinguish malignant from benign samples in the BI_RADS 0 category of the used dataset with an accuracy of 75.86% and correctly identify all malignant samples as BI_RADS 5. The Grad-CAM visualization shows the model pays attention to the morphological features of the lesions. Therefore, this study shows the uncertainty-aware Bayesian Deep Learning model can report his uncertainty about the malignancy of a lesion based on morphological features, like a radiologist.
Related papers
- Going beyond explainability in multi-modal stroke outcome prediction models [0.0]
We adapt the xAI methods Grad-CAM and Occlusion to multi-modal, partly interpretable deep transformation models (dTMs)
The dTMs achieve state-of-the-art prediction performance, with area under the curve (AUC) values close to 0.8.
Explanation maps calculated from brain imaging dTMs for functional outcome highlighted critical brain regions such as the frontal lobe.
arXiv Detail & Related papers (2025-04-07T09:56:16Z) - Self-Explaining Hypergraph Neural Networks for Diagnosis Prediction [45.89562183034469]
Existing deep learning diagnosis prediction models with intrinsic interpretability often assign attention weights to every past diagnosis or hospital visit.<n>We introduce SHy, a self-explaining hypergraph neural network model, designed to offer personalized, concise and faithful explanations.<n> SHy captures higher-order disease interactions and extracts distinct temporal phenotypes as personalized explanations.
arXiv Detail & Related papers (2025-02-15T06:33:02Z) - Learning a Clinically-Relevant Concept Bottleneck for Lesion Detection in Breast Ultrasound [0.0]
This work proposes an explainable AI model that provides interpretable predictions using a standard lexicon from the American College of Radiology's Breast Imaging and Reporting Data System (BI-RADS)
The model is a deep neural network featuring a concept bottleneck layer in which known BI-RADS features are predicted before making a final cancer classification.
arXiv Detail & Related papers (2024-06-29T00:44:33Z) - Post-Hoc Explainability of BI-RADS Descriptors in a Multi-task Framework
for Breast Cancer Detection and Segmentation [48.08423125835335]
MT-BI-RADS is a novel explainable deep learning approach for tumor detection in Breast Ultrasound (BUS) images.
It offers three levels of explanations to enable radiologists to comprehend the decision-making process in predicting tumor malignancy.
arXiv Detail & Related papers (2023-08-27T22:07:42Z) - Multivariate Analysis on Performance Gaps of Artificial Intelligence
Models in Screening Mammography [4.123006816939975]
Deep learning models for abnormality classification can perform well in screening mammography.
The demographic, imaging, and clinical characteristics associated with increased risk of model failure remain unclear.
We assessed model performance by subgroups defined by age, race, pathologic outcome, tissue density, and imaging characteristics.
arXiv Detail & Related papers (2023-05-08T02:28:45Z) - Lesion detection in contrast enhanced spectral mammography [0.0]
The recent emergence of neural networks models for the analysis of breast images has been a breakthrough in computer aided diagnostic.
This work proposes a deep-learning-based Computer Aided Diagnostic development for CESM recombined images able to detect lesions and classify cases.
arXiv Detail & Related papers (2022-07-20T06:49:02Z) - Improving the diagnosis of breast cancer based on biophysical ultrasound
features utilizing machine learning [0.0]
We propose a biophysical feature based machine learning method for breast cancer detection.
The overall accuracy for the most common types and sizes of breast lesions in our study exceeded 98.0% for classification and 0.98 for an area under the receiver operating characteristic curve.
arXiv Detail & Related papers (2022-07-13T23:53:09Z) - Supervised Machine Learning Algorithm for Detecting Consistency between
Reported Findings and the Conclusions of Mammography Reports [66.89977257992568]
Mammography reports document the diagnosis of patients' conditions.
Many reports contain non-standard terms (non-BI-RADS descriptors) and incomplete statements.
Our aim was to develop a tool to detect such discrepancies by comparing the reported conclusions to those that would be expected based on the reported radiology findings.
arXiv Detail & Related papers (2022-02-28T08:59:04Z) - Multi-Label Classification of Thoracic Diseases using Dense Convolutional Network on Chest Radiographs [0.0]
We propose a multi-label disease prediction model that allows the detection of more than one pathology at a given test time.
Our proposed model achieved the highest AUC score of 0.896 for the condition Cardiomegaly.
arXiv Detail & Related papers (2022-02-08T00:43:57Z) - StRegA: Unsupervised Anomaly Detection in Brain MRIs using a Compact
Context-encoding Variational Autoencoder [48.2010192865749]
Unsupervised anomaly detection (UAD) can learn a data distribution from an unlabelled dataset of healthy subjects and then be applied to detect out of distribution samples.
This research proposes a compact version of the "context-encoding" VAE (ceVAE) model, combined with pre and post-processing steps, creating a UAD pipeline (StRegA)
The proposed pipeline achieved a Dice score of 0.642$pm$0.101 while detecting tumours in T2w images of the BraTS dataset and 0.859$pm$0.112 while detecting artificially induced anomalies.
arXiv Detail & Related papers (2022-01-31T14:27:35Z) - BI-RADS-Net: An Explainable Multitask Learning Approach for Cancer
Diagnosis in Breast Ultrasound Images [69.41441138140895]
This paper introduces BI-RADS-Net, a novel explainable deep learning approach for cancer detection in breast ultrasound images.
The proposed approach incorporates tasks for explaining and classifying breast tumors, by learning feature representations relevant to clinical diagnosis.
Explanations of the predictions (benign or malignant) are provided in terms of morphological features that are used by clinicians for diagnosis and reporting in medical practice.
arXiv Detail & Related papers (2021-10-05T19:14:46Z) - Explaining COVID-19 and Thoracic Pathology Model Predictions by
Identifying Informative Input Features [47.45835732009979]
Neural networks have demonstrated remarkable performance in classification and regression tasks on chest X-rays.
Features attribution methods identify the importance of input features for the output prediction.
We evaluate our methods using both human-centric (ground-truth-based) interpretability metrics, and human-independent feature importance metrics on NIH Chest X-ray8 and BrixIA datasets.
arXiv Detail & Related papers (2021-04-01T11:42:39Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
We present UNcertaInTy-based hEalth risk prediction (UNITE) model.
UNITE provides accurate disease risk prediction and uncertainty estimation leveraging multi-sourced health data.
We evaluate UNITE on real-world disease risk prediction tasks: nonalcoholic fatty liver disease (NASH) and Alzheimer's disease (AD)
UNITE achieves up to 0.841 in F1 score for AD detection, up to 0.609 in PR-AUC for NASH detection, and outperforms various state-of-the-art baselines by up to $19%$ over the best baseline.
arXiv Detail & Related papers (2020-10-22T02:28:11Z) - An interpretable classifier for high-resolution breast cancer screening
images utilizing weakly supervised localization [45.00998416720726]
We propose a framework to address the unique properties of medical images.
This model first uses a low-capacity, yet memory-efficient, network on the whole image to identify the most informative regions.
It then applies another higher-capacity network to collect details from chosen regions.
Finally, it employs a fusion module that aggregates global and local information to make a final prediction.
arXiv Detail & Related papers (2020-02-13T15:28:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.