Towards Location-Specific Precipitation Projections Using Deep Neural Networks
- URL: http://arxiv.org/abs/2503.14095v1
- Date: Tue, 18 Mar 2025 10:12:17 GMT
- Title: Towards Location-Specific Precipitation Projections Using Deep Neural Networks
- Authors: Bipin Kumar, Bhvisy Kumar Yadav, Soumypdeep Mukhopadhyay, Rakshit Rohan, Bhupendra Bahadur Singh, Rajib Chattopadhyay, Nagraju Chilukoti, Atul Kumar Sahai,
- Abstract summary: This study presents a paradigm shift by leveraging Deep Neural Networks (DNNs) to surpass traditional methods like Kriging for station-specific precipitation approximation.<n>We propose two innovative NN architectures: one utilizing precipitation, elevation, and location, and another incorporating additional meteorological parameters like humidity, temperature, and wind speed.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate precipitation estimates at individual locations are crucial for weather forecasting and spatial analysis. This study presents a paradigm shift by leveraging Deep Neural Networks (DNNs) to surpass traditional methods like Kriging for station-specific precipitation approximation. We propose two innovative NN architectures: one utilizing precipitation, elevation, and location, and another incorporating additional meteorological parameters like humidity, temperature, and wind speed. Trained on a vast dataset (1980-2019), these models outperform Kriging across various evaluation metrics (correlation coefficient, root mean square error, bias, and skill score) on a five-year validation set. This compelling evidence demonstrates the transformative power of deep learning for spatial prediction, offering a robust and precise alternative for station-specific precipitation estimation.
Related papers
- Efficient Localized Adaptation of Neural Weather Forecasting: A Case Study in the MENA Region [62.09891513612252]
We focus on limited-area modeling and train our model specifically for localized region-level downstream tasks.
We consider the MENA region due to its unique climatic challenges, where accurate localized weather forecasting is crucial for managing water resources, agriculture and mitigating the impacts of extreme weather events.
Our study aims to validate the effectiveness of integrating parameter-efficient fine-tuning (PEFT) methodologies, specifically Low-Rank Adaptation (LoRA) and its variants, to enhance forecast accuracy, as well as training speed, computational resource utilization, and memory efficiency in weather and climate modeling for specific regions.
arXiv Detail & Related papers (2024-09-11T19:31:56Z) - Wind Power Prediction across Different Locations using Deep Domain Adaptive Learning [0.0]
Accurate prediction of wind power is essential for the grid integration of this intermittent renewable source.
A prediction model that learns from the data of a particular climatic region can suffer from being less robust.
A deep neural network (DNN) based domain adaptive approach is proposed to counter this drawback.
The proposed approach demonstrates higher accuracy ranging from 6.14% to even 28.44% compared to the traditional non-adaptive method.
arXiv Detail & Related papers (2024-05-18T05:57:52Z) - Using Deep Learning to Identify Initial Error Sensitivity for Interpretable ENSO Forecasts [0.0]
We introduce an interpretable-by-design method, optimized model-analog, that integrates deep learning with model-analog forecasting.
We evaluate our approach using the Community Earth System Model Version 2 Large Ensemble to forecast the El Nino-Southern Oscillation (ENSO) on a seasonal-to-annual time scale.
Results show a 10% improvement in forecasting equatorial Pacific sea surface temperature anomalies at 9-12 months leads.
arXiv Detail & Related papers (2024-04-23T18:10:18Z) - Observation-Guided Meteorological Field Downscaling at Station Scale: A
Benchmark and a New Method [66.80344502790231]
We extend meteorological downscaling to arbitrary scattered station scales and establish a new benchmark and dataset.
Inspired by data assimilation techniques, we integrate observational data into the downscaling process, providing multi-scale observational priors.
Our proposed method outperforms other specially designed baseline models on multiple surface variables.
arXiv Detail & Related papers (2024-01-22T14:02:56Z) - Long-term drought prediction using deep neural networks based on geospatial weather data [75.38539438000072]
High-quality drought forecasting up to a year in advance is critical for agriculture planning and insurance.
We tackle drought data by introducing an end-to-end approach that adopts a systematic end-to-end approach.
Key findings are the exceptional performance of a Transformer model, EarthFormer, in making accurate short-term (up to six months) forecasts.
arXiv Detail & Related papers (2023-09-12T13:28:06Z) - A Bayesian Deep Learning Approach to Near-Term Climate Prediction [12.870804083819603]
We pursue a complementary machine-learning-based approach to climate prediction.
In particular, we find that a feedforward convolutional network with a Densenet architecture is able to outperform a convolutional LSTM in terms of predictive skill.
arXiv Detail & Related papers (2022-02-23T00:28:36Z) - Forecasting large-scale circulation regimes using deformable
convolutional neural networks and global spatiotemporal climate data [86.1450118623908]
We investigate a supervised machine learning approach based on deformable convolutional neural networks (deCNNs)
We forecast the North Atlantic-European weather regimes during extended boreal winter for 1 to 15 days into the future.
Due to its wider field of view, we also observe deCNN achieving considerably better performance than regular convolutional neural networks at lead times beyond 5-6 days.
arXiv Detail & Related papers (2022-02-10T11:37:00Z) - Deep Learning Based Cloud Cover Parameterization for ICON [55.49957005291674]
We train NN based cloud cover parameterizations with coarse-grained data based on realistic regional and global ICON simulations.
Globally trained NNs can reproduce sub-grid scale cloud cover of the regional simulation.
We identify an overemphasis on specific humidity and cloud ice as the reason why our column-based NN cannot perfectly generalize from the global to the regional coarse-grained data.
arXiv Detail & Related papers (2021-12-21T16:10:45Z) - KNN, An Underestimated Model for Regional Rainfall Forecasting [6.421670116083633]
This paper aims to design an integrated tool by applying various machine learning algorithms.
Deep Neural Network, Wide Neural Network, Deep and Wide Neural Network, Reservoir Computing, Long Short Term Memory, Support Vector Machine, K-Nearest Neighbor for forecasting regional precipitations over different catchments in Upstate New York.
arXiv Detail & Related papers (2021-03-28T22:25:29Z) - SmaAt-UNet: Precipitation Nowcasting using a Small Attention-UNet
Architecture [5.28539620288341]
We show that it is possible to produce an accurate precipitation nowcast using a data-driven neural network approach.
We evaluate our approaches on a real-life datasets using precipitation maps from the region of the Netherlands and binary images of cloud coverage of France.
arXiv Detail & Related papers (2020-07-08T20:33:10Z) - A generative adversarial network approach to (ensemble) weather
prediction [91.3755431537592]
We use a conditional deep convolutional generative adversarial network to predict the geopotential height of the 500 hPa pressure level, the two-meter temperature and the total precipitation for the next 24 hours over Europe.
The proposed models are trained on 4 years of ERA5 reanalysis data from 2015-2018 with the goal to predict the associated meteorological fields in 2019.
arXiv Detail & Related papers (2020-06-13T20:53:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.