Comparative and Interpretative Analysis of CNN and Transformer Models in Predicting Wildfire Spread Using Remote Sensing Data
- URL: http://arxiv.org/abs/2503.14150v1
- Date: Tue, 18 Mar 2025 11:16:48 GMT
- Title: Comparative and Interpretative Analysis of CNN and Transformer Models in Predicting Wildfire Spread Using Remote Sensing Data
- Authors: Yihang Zhou, Ruige Kong, Zhengsen Xu, Linlin Xu, Sibo Cheng,
- Abstract summary: This study aims to thoroughly compare the performance, efficiency, and explainability of four prevalent deep learning architectures: Autoencoder, ResNet, UNet, and Transformer-based Swin-UNet.<n>Through detailed quantitative comparison analysis, we discovered that Transformer-based Swin-UNet and UNet generally outperform Autoencoder and ResNet.<n>XAI analysis reveals that UNet and Transformer-based Swin-UNet are able to focus on critical features more effectively than the other two models.
- Score: 5.268554613844063
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Facing the escalating threat of global wildfires, numerous computer vision techniques using remote sensing data have been applied in this area. However, the selection of deep learning methods for wildfire prediction remains uncertain due to the lack of comparative analysis in a quantitative and explainable manner, crucial for improving prevention measures and refining models. This study aims to thoroughly compare the performance, efficiency, and explainability of four prevalent deep learning architectures: Autoencoder, ResNet, UNet, and Transformer-based Swin-UNet. Employing a real-world dataset that includes nearly a decade of remote sensing data from California, U.S., these models predict the spread of wildfires for the following day. Through detailed quantitative comparison analysis, we discovered that Transformer-based Swin-UNet and UNet generally outperform Autoencoder and ResNet, particularly due to the advanced attention mechanisms in Transformer-based Swin-UNet and the efficient use of skip connections in both UNet and Transformer-based Swin-UNet, which contribute to superior predictive accuracy and model interpretability. Then we applied XAI techniques on all four models, this not only enhances the clarity and trustworthiness of models but also promotes focused improvements in wildfire prediction capabilities. The XAI analysis reveals that UNet and Transformer-based Swin-UNet are able to focus on critical features such as 'Previous Fire Mask', 'Drought', and 'Vegetation' more effectively than the other two models, while also maintaining balanced attention to the remaining features, leading to their superior performance. The insights from our thorough comparative analysis offer substantial implications for future model design and also provide guidance for model selection in different scenarios.
Related papers
- Adversarial Robustness for Deep Learning-based Wildfire Prediction Models [3.4528046839403905]
We introduce WARP, the first model-agnostic framework for evaluating the adversarial robustness of wildfire detection models.<n> WARP addresses limitations in smoke image diversity using global and local adversarial attack methods.<n> WARP's comprehensive robustness analysis contributed to the development of wildfire-specific data augmentation strategies.
arXiv Detail & Related papers (2024-12-28T04:06:29Z) - Comprehensive and Comparative Analysis between Transfer Learning and Custom Built VGG and CNN-SVM Models for Wildfire Detection [1.8616107180090005]
This paper examines the efficiency and effectiveness of transfer learning in the context of wildfire detection.
Three purpose-built models -- Visual Geometry Group (VGG)-7, VGG-10, and Convolutional Neural Network (CNN)-Support Vector Machine(SVM) CNN-SVM -- are rigorously compared.
We trained and evaluated these models using a dataset that captures the complexities of wildfires.
arXiv Detail & Related papers (2024-11-12T20:30:23Z) - Localized Gaussians as Self-Attention Weights for Point Clouds Correspondence [92.07601770031236]
We investigate semantically meaningful patterns in the attention heads of an encoder-only Transformer architecture.
We find that fixing the attention weights not only accelerates the training process but also enhances the stability of the optimization.
arXiv Detail & Related papers (2024-09-20T07:41:47Z) - Automated Data Augmentation for Few-Shot Time Series Forecasting: A Reinforcement Learning Approach Guided by a Model Zoo [34.40047933452929]
We present a pilot study on using reinforcement learning (RL) for time series data augmentation.<n>Our method, ReAugment, tackles three critical questions: which parts of the training set should be augmented, how the augmentation should be performed, and what advantages RL brings to the process.
arXiv Detail & Related papers (2024-09-10T07:34:19Z) - Open-Set Deepfake Detection: A Parameter-Efficient Adaptation Method with Forgery Style Mixture [58.60915132222421]
We introduce an approach that is both general and parameter-efficient for face forgery detection.
We design a forgery-style mixture formulation that augments the diversity of forgery source domains.
We show that the designed model achieves state-of-the-art generalizability with significantly reduced trainable parameters.
arXiv Detail & Related papers (2024-08-23T01:53:36Z) - Zero-Shot Embeddings Inform Learning and Forgetting with Vision-Language Encoders [6.7181844004432385]
The Inter-Intra Modal Measure (IIMM) functions as a strong predictor of performance changes with fine-tuning.
Fine-tuning on tasks with higher IIMM scores produces greater in-domain performance gains but also induces more severe out-of-domain performance degradation.
With only a single forward pass of the target data, practitioners can leverage this key insight to evaluate the degree to which a model can be expected to improve following fine-tuning.
arXiv Detail & Related papers (2024-07-22T15:35:09Z) - A Predictive Model Based on Transformer with Statistical Feature Embedding in Manufacturing Sensor Dataset [2.07180164747172]
This study proposes a novel predictive model based on the Transformer, utilizing statistical feature embedding and window positional encoding.
The model's performance is evaluated in two problems: fault detection and virtual metrology, showing superior results compared to baseline models.
The results support the model's applicability across various manufacturing industries, demonstrating its potential for enhancing process management and yield.
arXiv Detail & Related papers (2024-07-09T08:59:27Z) - Evaluating Predictive Models in Cybersecurity: A Comparative Analysis of Machine and Deep Learning Techniques for Threat Detection [0.0]
This paper examines and compares various machine learning as well as deep learning models to choose the most suitable ones for detecting and fighting against cybersecurity risks.
The two datasets are used in the study to assess models like Naive Bayes, SVM, Random Forest, and deep learning architectures, i.e., VGG16, in the context of accuracy, precision, recall, and F1-score.
arXiv Detail & Related papers (2024-07-08T15:05:59Z) - Explainable AI Integrated Feature Engineering for Wildfire Prediction [1.7934287771173114]
We conducted a thorough assessment of various machine learning algorithms for both classification and regression tasks relevant to predicting wildfires.
For classifying different types or stages of wildfires, the XGBoost model outperformed others in terms of accuracy and robustness.
The Random Forest regression model showed superior results in predicting the extent of wildfire-affected areas.
arXiv Detail & Related papers (2024-04-01T21:12:44Z) - ASPEST: Bridging the Gap Between Active Learning and Selective
Prediction [56.001808843574395]
Selective prediction aims to learn a reliable model that abstains from making predictions when uncertain.
Active learning aims to lower the overall labeling effort, and hence human dependence, by querying the most informative examples.
In this work, we introduce a new learning paradigm, active selective prediction, which aims to query more informative samples from the shifted target domain.
arXiv Detail & Related papers (2023-04-07T23:51:07Z) - Transformer-based approaches to Sentiment Detection [55.41644538483948]
We examined the performance of four different types of state-of-the-art transformer models for text classification.
The RoBERTa transformer model performs best on the test dataset with a score of 82.6% and is highly recommended for quality predictions.
arXiv Detail & Related papers (2023-03-13T17:12:03Z) - Vision Transformers are Robust Learners [65.91359312429147]
We study the robustness of the Vision Transformer (ViT) against common corruptions and perturbations, distribution shifts, and natural adversarial examples.
We present analyses that provide both quantitative and qualitative indications to explain why ViTs are indeed more robust learners.
arXiv Detail & Related papers (2021-05-17T02:39:22Z) - Firearm Detection via Convolutional Neural Networks: Comparing a
Semantic Segmentation Model Against End-to-End Solutions [68.8204255655161]
Threat detection of weapons and aggressive behavior from live video can be used for rapid detection and prevention of potentially deadly incidents.
One way for achieving this is through the use of artificial intelligence and, in particular, machine learning for image analysis.
We compare a traditional monolithic end-to-end deep learning model and a previously proposed model based on an ensemble of simpler neural networks detecting fire-weapons via semantic segmentation.
arXiv Detail & Related papers (2020-12-17T15:19:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.