論文の概要: Ensemble Knowledge Distillation for Machine Learning Interatomic Potentials
- arxiv url: http://arxiv.org/abs/2503.14293v1
- Date: Tue, 18 Mar 2025 14:32:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-19 14:14:54.897165
- Title: Ensemble Knowledge Distillation for Machine Learning Interatomic Potentials
- Title(参考訳): 機械学習による原子間ポテンシャルのエンサンブル知識蒸留
- Authors: Sakib Matin, Emily Shinkle, Yulia Pimonova, Galen T. Craven, Ying Wai Li, Kipton Barros, Nicholas Lubbers,
- Abstract要約: 機械学習原子間ポテンシャル(MLIP)は、原子論シミュレーションと分子特性予測を加速するための有望なツールである。
MLIPの品質は、利用可能なトレーニングデータの量と、そのデータを生成するのに使用される量子化学(QC)レベルの理論に依存する。
本研究では,エネルギーのみのデータセットに学習した際のMLIP精度を向上させるために,アンサンブル知識蒸留(EKD)法を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Machine learning interatomic potentials (MLIPs) are a promising tool to accelerate atomistic simulations and molecular property prediction. The quality of MLIPs strongly depends on the quantity of available training data as well as the quantum chemistry (QC) level of theory used to generate that data. Datasets generated with high-fidelity QC methods, such as coupled cluster, are typically restricted to small molecules and may be missing energy gradients. With this limited quantity of data, it is often difficult to train good MLIP models. We present an ensemble knowledge distillation (EKD) method to improve MLIP accuracy when trained to energy-only datasets. In our EKD approach, first, multiple teacher models are trained to QC energies and then used to generate atomic forces for all configurations in the dataset. Next, a student MLIP is trained to both QC energies and to ensemble-averaged forces generated by the teacher models. We apply this workflow on the ANI-1ccx dataset which consists of organic molecules with configuration energies computed at the coupled cluster level of theory. The resulting student MLIPs achieve new state-of-the-art accuracy on the out-of-sample COMP6 benchmark and improved stability for molecular dynamics simulations. The EKD approach for MLIP is broadly applicable for chemical, biomolecular and materials science simulations.
- Abstract(参考訳): 機械学習原子間ポテンシャル(MLIP)は、原子論シミュレーションと分子特性予測を加速するための有望なツールである。
MLIPの品質は、利用可能なトレーニングデータの量と、そのデータを生成するのに使用される量子化学(QC)レベルの理論に強く依存する。
結合クラスタのような高忠実度QC法で生成されたデータセットは、通常は小さな分子に制限されており、エネルギー勾配が欠落している可能性がある。
この限られた量のデータでは、良いMLIPモデルを訓練することはしばしば困難である。
本研究では,エネルギーのみのデータセットに学習した際のMLIP精度を向上させるために,アンサンブル知識蒸留(EKD)法を提案する。
EKDアプローチでは、まず複数の教師モデルをQCエネルギーに訓練し、次にデータセットのすべての構成に対して原子力を生成する。
次に、学生MLIPは、教師モデルによって生成されたQCエネルギーとアンサンブル平均力の両方に訓練される。
このワークフローをANI-1ccxデータセットに適用する。これは、結合されたクラスターレベルで計算される構成エネルギーを持つ有機分子からなる。
得られた学生MLIPは、サンプル外Computer6ベンチマークで新しい最先端の精度を達成し、分子動力学シミュレーションの安定性を改善した。
MLIPのEKDアプローチは、化学、分子、材料科学のシミュレーションに広く応用されている。
関連論文リスト
- Excited-state nonadiabatic dynamics in explicit solvent using machine learned interatomic potentials [0.602276990341246]
我々はFieldSchNetを用いてQM/MM静電埋め込みを、非断熱励起状態軌跡のML/MMに置き換える。
ML/MMモデルはQM/MM表面ホッピング参照シミュレーションの電子動力学と構造再構成を再現することを示した。
論文 参考訳(メタデータ) (2025-01-28T14:14:43Z) - Multi-task learning for molecular electronic structure approaching coupled-cluster accuracy [9.81014501502049]
金標準CCSD(T)計算をトレーニングデータとして,有機分子の電子構造を統一した機械学習手法を開発した。
炭化水素分子を用いたモデルでは, 計算コストと様々な量子化学特性の予測精度において, 広範に用いられているハイブリッド関数と二重ハイブリッド関数でDFTより優れていた。
論文 参考訳(メタデータ) (2024-05-09T19:51:27Z) - Data-Efficient Molecular Generation with Hierarchical Textual Inversion [48.816943690420224]
分子生成のための階層型テキスト変換法 (HI-Mol) を提案する。
HI-Molは分子分布を理解する上での階層的情報、例えば粗い特徴ときめ細かい特徴の重要性にインスパイアされている。
単一レベルトークン埋め込みを用いた画像領域の従来のテキストインバージョン法と比較して, マルチレベルトークン埋め込みにより, 基礎となる低ショット分子分布を効果的に学習することができる。
論文 参考訳(メタデータ) (2024-05-05T08:35:23Z) - Interpolation and differentiation of alchemical degrees of freedom in machine learning interatomic potentials [0.980222898148295]
原子性物質シミュレーションにおける連続的および微分可能なアルケミカル自由度の利用について報告する。
提案手法は,MLIPのメッセージパッシングおよび読み出し機構の変更とともに,対応する重みを持つアルケミカル原子を入力グラフに導入する。
MLIPのエンドツーエンドの微分可能性により、構成重みに対するエネルギー勾配の効率的な計算が可能となる。
論文 参考訳(メタデータ) (2024-04-16T17:24:22Z) - QH9: A Quantum Hamiltonian Prediction Benchmark for QM9 Molecules [69.25826391912368]
QH9と呼ばれる新しい量子ハミルトンデータセットを生成し、999または2998の分子動力学軌道に対して正確なハミルトン行列を提供する。
現在の機械学習モデルでは、任意の分子に対するハミルトン行列を予測する能力がある。
論文 参考訳(メタデータ) (2023-06-15T23:39:07Z) - Molecular Geometry-aware Transformer for accurate 3D Atomic System
modeling [51.83761266429285]
本稿では,ノード(原子)とエッジ(結合と非結合の原子対)を入力とし,それらの相互作用をモデル化するトランスフォーマーアーキテクチャを提案する。
MoleformerはOC20の緩和エネルギー予測の初期状態の最先端を実現し、QM9では量子化学特性の予測に非常に競争力がある。
論文 参考訳(メタデータ) (2023-02-02T03:49:57Z) - Accurate Machine Learned Quantum-Mechanical Force Fields for
Biomolecular Simulations [51.68332623405432]
分子動力学(MD)シミュレーションは、化学的および生物学的プロセスに関する原子論的な洞察を可能にする。
近年,MDシミュレーションの代替手段として機械学習力場(MLFF)が出現している。
本研究は、大規模分子シミュレーションのための正確なMLFFを構築するための一般的なアプローチを提案する。
論文 参考訳(メタデータ) (2022-05-17T13:08:28Z) - Federated Learning of Molecular Properties in a Heterogeneous Setting [79.00211946597845]
これらの課題に対処するために、フェデレーションヘテロジニアス分子学習を導入する。
フェデレートラーニングにより、エンドユーザは、独立したクライアント上に分散されたトレーニングデータを保存しながら、グローバルモデルを協調的に構築できる。
FedChemは、化学におけるAI改善のための新しいタイプのコラボレーションを可能にする必要がある。
論文 参考訳(メタデータ) (2021-09-15T12:49:13Z) - BIGDML: Towards Exact Machine Learning Force Fields for Materials [55.944221055171276]
機械学習力場(MLFF)は正確で、計算的で、データ効率が良く、分子、材料、およびそれらのインターフェースに適用できなければならない。
ここでは、Bravais-Inspired Gradient-Domain Machine Learningアプローチを導入し、わずか10-200原子のトレーニングセットを用いて、信頼性の高い力場を構築する能力を実証する。
論文 参考訳(メタデータ) (2021-06-08T10:14:57Z) - Automated discovery of a robust interatomic potential for aluminum [4.6028828826414925]
機械学習(ML)ベースのポテンシャルは、量子力学(QM)計算の忠実なエミュレーションを、計算コストを大幅に削減することを目的としている。
アクティブラーニング(AL)の原理を用いたデータセット構築のための高度に自動化されたアプローチを提案する。
アルミニウム(ANI-Al)のMLポテンシャル構築によるこのアプローチの実証
転写性を示すために、1.3M原子衝撃シミュレーションを行い、非平衡力学から採取した局所原子環境上でのDFT計算とANI-Al予測がよく一致することを示す。
論文 参考訳(メタデータ) (2020-03-10T19:06:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。